Análisis de las estrategias de apoyo elaboradas por futuros docentes de educación secundaria para guiar al alumnado en la indagación

Descargas

Visitas a la página del resumen del artículo:  1232  

Información

Formación del profesorado de ciencias
pp. 473-486
Publicado: 09-03-2017

Autores/as

  • Beatriz Crujeiras-Pérez (ES) Universidad de Santiago de Compostela

Resumen

El objetivo de este trabajo es examinar el diseño de estrategias de apoyo elaboradas por futuros docentes de educación secundaria para guiar al alumnado en la resolución de una actividad de indagación sobre enlace químico. Los participantes son 17 futuros docentes cursando la asignatura de didáctica de la física y la química del máster de formación de profesorado. Para ello se analizan las producciones escritas de los participantes en términos de adecuación de la información proporcionada a los estudiantes en el guión de la tarea y de las estrategias utilizadas para guiarlos en la indagación. Los resultados principales indican una tendencia general a guiar a los estudiantes en la utilización del contenido científico más que en la indagación.

Palabras clave: Andamiaje; Indagación; Formación Inicial; Profesorado Secundaria

Analysis of the scaffolding strategies developed by pre-service secondary teachers to guide students in inquiry practices

The goal of this study is to examine the teaching strategies developed by pre-service secondary teachers in order to guide students in solving an inquiry-based task about chemical bonding. The participants are 17 pre-service teachers attending a Physics and Chemistry Education course making part of the Master’s Degree in Teacher Training. To do so, participants’ written products are analysed in terms of the adequacy of the information provided in the handout of the task and of the strategies used to scaffold them in the inquiry process. The preliminary results point to a general tendency to guide students in the use of content knowledge rather than in inquiry.

Keywords: Sscaffolding; Inquiry; Initial teacher-training, secondary teachers.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Beatriz Crujeiras-Pérez, Universidad de Santiago de Compostela

Profesora contratada en el departamento de Didácticas Aplicadas de la Universidad de Santiago de Compostela

Citas

Alozie, N. M., Moje, E. B., y Krajcik, J. S. (2010). An Analysis of the Supports and Constraints for Scientific Discussion in High School Project-Based Science. Science Education, 94, 395-427. http://onlinelibrary.wiley.com/doi/10.1002/sce.20365/pdf.

Anderson, R. D. (2007). Inquiry as an Organizer Theme for Science Curricula. En S. K. Abell y N.G. Lederman (Eds.). Handbook of Research on Science Education (pp. 807-830). New York: Routledge

Autora y Colega (en prensa). Enseñanza de las Ciencias.

Bergqvist, A., Drechsler, M., De Jong, O. y Rundgren S.C. (2013). Representations of chemical bonding models in school textbooks-help or hindrance for understanding? Chemistry Education Research and Practice, 14, 589-606.

Biggers, M., Forbes, C. T. (2012). Balancing teacher and student roles in elementary classrooms: pre-service elementary teachers' learning about the inquiry continuum. International Journal of Science Education, 34(14), 2205-2229.

Capps, D. K., Crawford, B.A., y Constas, M. A. (2012). A review of empirical literature on inquiry professional develpoment: alignnment with best practices and a critique of the findings. Journal of Science Teacher Education, 23, 291-318.

Chang, H-Y., y Chang, H-C. (2013). Scaffolding students’ online critiquing of expert-and peer-generated molecular models of chemical reactions. International Journal of Science Education, 35(12), 2028-2056.

Coll, R. K., y Treagust, D. F. (2003). Learners’ mental models of metallic bonding: a cross-age study. Science Education, 87, 685-707.

Frailich, M., Kerner, M., y Hofstein, A. (2009). Enhancing students’ understanding of the concept of chemical bonding by using activities provided on an interactive website. Journal of Research in Science Teaching, 46(3), 289-310.

Gillies, R., y Nichols, K. (2015). How to support primary teachers’ implementation of inquiry: teachers’ reflections on teaching cooperative inquiry-based science. Research in Science Education, 45, 171-191.

Hilton, A., y Nichols, K. (2011). Representational classroom practices that contribute to students’ conceptual and representational understanding of chemical bonding. International Journal of Science Education, 33(16), 2215-2246.

Hmelo-Silver, C. E., Duncan, R. G., y Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99-107

Holbrook, J., y Kolodner, J. L. (2000). Scaffolding the development of an inquiry-based (science) classroom. En B. J. Fishman y S. F. O’Connor- Divelbiss (Eds.), Proceedings of the Fourth International Conference of the Learning Sciences (pp. 221–27). Ann Arbor: University of Michigan.

Hsu, Y-S., Lai, T-L., y Hsu, W-H. (2015). A design model for distributted scaffolding for Inquiry-Based Learning. Research in Science Education, 45, 241-273.

Kukkonen, J. E., Kärkkäinen, S., Dillon, P., y Keinonen, T. (2014). Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders’ Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), 406-424.

Lin, S-F., Lieu, S-C., Chen, S., Huang M-T., y Chang, W-H. (2012). Affording explicit-reflective science teaching by using an educative teachers’ guide. International Journal of Science Education, 7(1), 999-1026.

Luft, J. A. (2001). Changing inquiry practices and beliefs: The impact of an inquiry-based professional development programme on beginning and experienced secondary science teachers. International Journal of Science Education, 23, 517–534.

National Research Council (NRC) (2012). A framework for K12 Science Education: practices, crosscutting concepts and core ideas. Washington DC: National Academy Press.

Nimmermark, A., Öhrström, L., Màrtensson, J., y Davidowitz, B. (2016). Teaching of chemical bonding: a study of Sweedish and South African students’ conceptions of bonding. Chemistry Education, Research and Practice, 17, 985-1005.

Organisation for Economic Cooperation and Development. (2013). PISA 2015 draft science framework. Paris, France: Author.

Osborne, J. (2014). Scientific practices and inquiry in the science classroom. En N. G. Lederman y S. K. Abell (Eds.). Handbook of Research on Science Education,(pp. 579-599). New York: Routldege, vol. II.

Ozmen, H. (2004). Some student misconceptions in chemistry: a literature review of chemical bonding. Journal of Science Education and Technology, 13(2), 147-159.

Puntambekar, S., y Kolodoner, J. K. (2005). Toward implementing distributed scaffolding: helping students learn science from design. Journal of research in science teaching, 42(2), 185-271.

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., y Soloway. E. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386.

Reiser, B. J. (2004). Scaffolding Complex Learning: The Mechanisms of Structuring and Problematizing Student Work. The Journal of the Learning Sciences, 13(3), 273-304.

Rushton, G. T., Lotter, C., y Singer, J. (2011). Chemistry teachers’ emerging expertise in inquiry teaching: The effect of a professional development model on beliefs and practice. Journal of Science Teacher Education, 22, 23–52.

Rutten, N., van Joolingen, W.R., y van der Veen, J.T. (2011). The learning effects of computer simulations in science education. Computers y Education, 58(1), 136–153.

Schreirer, M. (2012). Qualitative content analysis in practice. London, United Kingdom: Sage.

Van de Pol, J., Volman, M. y Beishuizen, J. (2010). Scaffolding in teacher student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296.

Van der Valk, T., y De Jong, O. (2009). Scaffolding Teachers in Open-Inquiry Teaching. International Journal of Science Education, 31(6), 829-850.

Van Hook, S. J., Huziak-Clark, T. L., Nurnberger-Haag, J., y Ballone-Duran, L. (2009). Developing an understanding of inquiry by teachers and graduate student scientists through a collaborative PD program. Electronic Journal of Science Education, 13(2), 30–61.

Vygotsky, L. S. (1979). El desarrollo de los procesos psicológicos superiores. Barcelona: Crítica, D. L.

Windschitl, M. (2003). Inquiry projects in science teacher education: what can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112-143. doi: 10.1002/sce.10044

Wood, D., Bruner, J. S., y Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology y Psychiatry y Allied Disciplines, 17, 89–100.

Wu., H-L., Pedersen, S. (2011). Integrating computer-and teacher-based scaffolds in science inquiry. Computers y Education, 57, 2352-2363.

Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99 – 149.