Ideas clave para enseñar la luz en primaria

Descargas

Visitas a la página del resumen del artículo:  695  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2602

Información

Formación del profesorado de ciencias
2602
Publicado: 03-04-2023
PlumX

Autores/as

  • Víctor Grau Torre-Marín (ES) Departament d'educació lingüística i literària i de didàctica de les ciències experimentals i de la matemàtica, Universitat de Barcelona. España.
  • Carolina Pipitone Vela (ES) Departament d'educació lingüística i literària i de didàctica de les ciències experimentals i de la matemàtica, Universitat de Barcelona. España. https://orcid.org/0000-0002-4008-8727

Resumen

Este trabajo aborda las principales ideas asociadas a los procesos de enseñanza-aprendizaje de la luz en educación primaria y en concreto en la formación inicial del profesorado. En primer lugar, se presentan las principales dificultades de aprendizaje en los infantes, que suelen ser compartidas por el profesorado en formación inicial. Además, se ha realizado un análisis de varios libros de textos de primaria, identificando en ellos las principales deficiencias de sus propuestas para trabajar la luz. A partir de la revisión y de la experiencia de los autores en la formación del profesorado se plantea una propuesta de ideas clave y su secuenciación para trabajar la luz en educación primaria.

Palabras clave: Ideas clave, Luz, Formación del Profesorado, Educación Primaria.

Key ideas for teaching light in primary school

Abstract: This paper addresses the main ideas associated with the teaching-learning processes of light in primary education and specifically in Pre-service teacher training. First, the main learning difficulties in infants, which are usually shared by teachers in Pre-service teacher training, are presented. In addition, an analysis of several primary textbooks has been carried out, identifying the main deficiencies in their proposals for working with light. Based on the review and the authors' experience in teacher training, a proposal of key ideas and their sequencing for working with light in primary education is presented.

Keywords: Key Ideas, Light, Teacher Training, Primary Education

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carolina Pipitone Vela, Departament d'educació lingüística i literària i de didàctica de les ciències experimentals i de la matemàtica, Universitat de Barcelona. España.

Departament d'educació lingüística i literària i de didàctica de les ciències experimentals i de la matemàtica Universitat de Barcelona, Barcelona. España

Coordinadora del Máster de formación del profesorado, especialidad en física y química

Citas

Adúriz-Bravo, A. (2012). Algunas características clave de los modelos científicos relevantes para la educación química. Educación Química, 23, 248-256. https://doi.org/10.1016/S0187-893X(17)30151-9

Andersson, B., y Bach, F. (2005). On designing and evaluating teaching sequences taking geometrical optics as an example. Science Education, 89(2), 196-218. https://doi.org/10.1002/sce.20044

Currículum. Educació primària. (2019). Departament d’Educació. http://educacio.gencat.cat/ca/departament/publicacions/colleccions/curriculum/curriculum-ed-primaria/

Driver, R., Guesne, E., y Tiberghien, A. (1985). Some features of children’s ideas and their implications for teaching. Children’s ideas in science, 193-201.

Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., y Parchmann, I. (2012). The Model of Educational Reconstruction – a Framework for Improving Teaching and Learning Science1. https://doi.org/10.1007/978-94-6091-900-8_2

Foundation, N. (1985). Nuffield Primary Science and the SPACE project 1985 (Science Processes And Concept Exploration). http://www.nuffieldfoundation.org/nuffield-primary-science-and-space-project-1985

Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27(1), 7-40.

Galili, I. (1996). Students’ conceptual change in geometrical optics. International Journal of Science Education, 18(7), 847-868. https://doi.org/10.1080/0950069960180709

Galili, I., y Hazan, A. (2000). Learners’ knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88. https://doi.org/10.1080/095006900290000

Gess-Newsome, J. (2002). Secondary Teachers’ Knowledge and Beliefs about Subject Matter and their Impact on Instruction. En J. Gess-Newsome & N. G. Lederman (Ed.), Examining Pedagogical Content Knowledge (Vol. 6). Kluwer Academic Publishers. http://www.springerlink.com/content/j66t4t4m510021u3/

Giere, R. (1988). Explaning Science. A cognitive approach. Chicago and London: The University of Chicago.

Gilbert, J. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130.

Gilbert, J., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses? International Journal of Science Education, 20(1), 83-97.

Gilbert, S. (1991). Model Building and Definition of Science. Journal of research in science teaching, 28(1), 73-79.

Hernández, M., y Pintó, R. (2016). The Process of Iterative Development of a Teaching/Learning Sequence on Acoustic Properties of Materials. En D. Psillos & P. Kariotoglou (Ed.), Iterative Design of Teaching-Learning Sequences: Introducing the Science of Materials in European Schools (p. 129-166). Springer Netherlands. https://doi.org/10.1007/978-94-007-7808-5_7

Heywood, D. S. (2005). Primary Trainee Teachers’ Learning and Teaching About Light: Some pedagogic implications for initial teacher training. International Journal of Science Education, 27(12), 1447-1475. https://doi.org/10.1080/09500690500153741

Izquierdo, M., y Adúriz-Bravo, A. (2003). Epistemological Foundations of School Science. Science & Education, 12(1), 27-43. http://dx.doi.org/10.1023/A:1022698205904

Izquierdo, M., Sanmartí, N., y Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimentales. Enseñanza de las Ciencias: revista de investigación y experiencias didácticas, 17(1), 45-59.

Osborne, R., y Freyberg, P. (1991). El Aprendizaje de las ciencias: Influencia de las «ideas previas» de los alumnos. Narcea Ediciones.

Piaget, J. (1973). The child and reality: Problems of genetic psychology. (Trans. Arnold Rosin). Grossman.

Piaget, J., y García, R. (1973). Las explicaciones causales. Barral.

Ramadas, J., Driver, R., y Project, C. L. in S. (1989). Aspects of Secondary Students; Ideas about Light. Centre for Studies in Science and Mathematics, Education, University of Leeds.

Rouse, W. B., y Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological bulletin, 100(3), 349.

Sanmartí, N. (2002). Didáctica de las ciencias en la educación secundária obligatoria. Síntesis Educación.

Solbes, J., y García, J. F. Z. (1993). ¿Qué sucede con la enseñanza de la optica? Revista española de física, 7(4), 38-43.

Talanquer, V. (2004). Formación docente: ¿Qué conocimiento distingue a los buenos maestros de química? Educación química, 15(1), 52-58.

Tomasi, J. (1988). Models and modeling in theoretical chemistry. Journal of Molecular Structure: THEOCHEM, 179(1), 273-292.

Viennot, L. (2002). Razonar en fisica La contribucion del sentido comun.

Viennot, L., y Chauvet, F. (1997). Two dimensions to characterize research‐based teaching strategies: Examples in elementary optics. International Journal of Science Education, 19(10), 1159-1168.

Wadsworth, P. (1993). Nuffield Primary Science: Key Stage 2: Light: Pupils’ Book - Years 3-4.

Zajonc, A. (2015). Atrapar la luz. Ediciones Atalanta S.A.