Ecodesign as an applicable method to the didactics of Industrial Product Design in Chile

Downloads

Article abstract page views:  382  

DOI

https://doi.org/10.25267/P56-IDJ.2023.i3.01

Authors

Abstract

The following article assumes the need to approximate the methodology and general concepts of Ecodesign to the practical exercise of Product Design. This, considering the guidelines given by the adaptation of certain stages derived from the Life Cycle Analysis; as well as the identification of opportunities that are opened from the interpretation of the country scenario, given the peremptory implementation of the different regulations and requirements that have the objective of environmental improvement.

It is proposed to establish a procedural model applicable to the University Teaching of Industrial Design, as well as the development of disciplinary praxis at a professional level and with particular focus, on the one executed in Small and Medium Enterprises. Systematizing in this way, decisional aspects for the planning of products with a sustainable approach and in tune with the current environmental institutional framework.

The results obtained show an agile response in the resolution of cases aimed at design optimization. Considering for this purpose, the guidelines given by collecting data of certain environmental indicators and their transfer to Ecodesign strategies, as possible instances of improvement. Therefore, the proposed solutions mainly considered criteria for the reduction and recyclability of materials, optimization and efficient disassembly of parts and components, as well as the extension of the useful life of the product. Translating these factors, into relevant benefits for the user, for constituting a close communicative instance, for the understanding and promotion of the different principles that support good environmental practices.

Keywords


Downloads

Download data is not yet available.

How to Cite

Venegas Marcel, M. (2023). Ecodesign as an applicable method to the didactics of Industrial Product Design in Chile. Proyecta56, an Industrial Design Journal, (3), 4–40. https://doi.org/10.25267/P56-IDJ.2023.i3.01

References

Abuzied, H., Senbel, H., Awad, M., & Abbas, A. (2020). A review of advances in design for disassembly with active disassembly applications. Engineering Science and Technology, an International Journal, 23 (3), 618-624. https://doi.org/10.1016/j.jestch.2019.07.003

Allen, J. D., Stevenson, P. D., Mattson, C. A., & Hatch, N. W. (2019). Over-Design Versus Redesign as a Response to Future Requirements. Journal of Mechanical Design, 141(3). https://doi.org/10.1115/1.4042335

Brezet, H., & van Hemel, C. (1997). Ecodesign: A promising approach to sustainable production and consumption (1°). U.N.E.P.

Brones, F. A., Carvalho, M. M. de, & Zancul, E. de S. (2017). Reviews, action and learning on change management for ecodesign transition. Journal of Cleaner Production 142, 8-22. https://doi.org/10.1016/j.jclepro.2016.09.009

Brundage, M. P., Bernstein, W. Z., Hoffenson, S., Chang, Q., Nishi, H., Kliks, T., & Morris, K. C. (2018). Analyzing environmental sustainability methods for use earlier in the product lifecycle. Journal of Cleaner Production, 187, 877-892. https://doi.org/10.1016/j.jclepro.2018.03.187

Carey, M., White, E. J., McMahon, M., & O’Sullivan, L. W. (2019). Using personas to exploit environmental attitudes and behaviour in sustainable product design. Applied Ergonomics, 78, 97-109. https://doi.org/10.1016/j.apergo.2019.02.005

Castro, P., Barahona, E., Celedón, M., Dossow, V., Droguett, M., & Fernández, K. (2022). Diseño de Rodado de baja complejidad. Taller de Diseño Ecológico, UTFSM. [Presentación para examinación semestral de asignatura]. Entrega Final de Taller Diseño Ecológico, Viña del Mar, Chile.

Chiu, M.-C., & Okudan, G. E. (2010). Evolution of Design for X Tools Applicable to Design Stages: A Literature Review. Volume 6: 15th Design for Manufacturing and the Lifecycle Conference; 7th Symposium on International Design and Design Education, 171-182. https://doi.org/10.1115/DETC2010-29091

De Aguiar, J., Oliveira, L. de, Silva, J. O. da, Bond, D., Scalice, R. K., & Becker, D. (2017). A design tool to diagnose product recyclability during product design phase. Journal of Cleaner Production, C(141), 219-229. https://doi.org/10.1016/j.jclepro.2016.09.074

Diago, L., Lacasa, E., Urmente, L., Millán, I., & Santolaya, J. L. (2019). Integrating Sustainability in Product Development Projects. En F. Cavas-Martínez, B. Eynard, F. J. Fernández Cañavate, D. G. Fernández-Pacheco, P. Morer, & V. Nigrelli (Eds.), Advances on Mechanics, Design Engineering and Manufacturing II (pp. 13-22). Springer International Publishing. https://doi.org/10.1007/978-3-030-12346-8_2

Diehl, J. C., & Brezet, H. (2005). Ecodesign Education: Personalized Design Knowledge Transfer. 11. ttps://www.researchgate.net/publication/310649594_ECODESIGN_EDUCATION_PERSONALISED_DESIGN_KNOWLEDGE_TRANSFER

Duan, Y., Gao, H., Li, J., & Huang, M. (2015). Formalizing Over Design and Under Design. International Journal of Multimedia and Ubiquitous Engineering, 10(12), 279-288.

Favi, C., Marconi, M., & Germani, M. (2019). Teaching eco-design by using LCA analysis of company’s product portfolio: The case study of an Italian manufacturing firm. Procedia CIRP, 80, 452-457. https://doi.org/10.1016/j.procir.2019.01.032

Gertsakis, J. (2001). Maximising Environmental Quality through EcoredesignTM. En Sustainable Solutions (p. 13). Routledge.

Gupta, R. K., Belkadi, F., & Bernard, A. (2017). Evaluation and management of customer feedback to include market dynamics into product development: Satisfaction Importance Evaluation (SIE) model. DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-25.08.2017, 4, 327-336.

IHOBE. (2000). Manual Práctico de Ecodiseño. Operativa de Implantación en 7 pasos (1°). IHOBE, S.A. https://www.euskadi.eus/contenidos/documentacion/ekodiseinu7/es_def/adjuntos/PUB-2000-014-f-C-001.pdf

Iuga, A., Popa, V., & Popa, L. (2017). Industrial Product Life Cycle Stages and Lifecycle Eco-design. En V. Majstorovic & Z. Jakovljevic (Eds.), Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies (pp. 365-374). Springer International Publishing. https://doi.org/10.1007/978-3-319-56430-2_27

Liu, C., & Zhao, Y. (2020). The Application of Lifecycle Design Strategies in the Interaction Design. En R. S. Goonetilleke & W. Karwowski (Eds.), Advances in Physical Ergonomics and Human Factors (pp. 369-376). Springer International Publishing. https://doi.org/10.1007/978-3-030-20142-5_37

Ma, J., Kremer, G. E. O., & Ray, C. D. (2018). A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage. Research in Engineering Design, 29(3), 469-487. https://doi.org/10.1007/s00163-017-0277-0

Manzano, M. G. (2022). Rol del Ecodiseño en la Industria Chilena del Plástico. Tekhné, 25(1), Article 1.

Miranda de Souza, V., & Borsato, M. (2016). Combining Stage-GateTM model using Set-Based concurrent engineering and sustainable end-of-life principles in a product development assessment tool. Journal of Cleaner Production, 112, 3222-3231. https://doi.org/10.1016/j.jclepro.2015.06.013

Rodrigues, V. P., Pigosso, D. C. A., & McAloone, T. C. (2017). Measuring the implementation of ecodesign management practices: A review and consolidation of process-oriented performance indicators. Journal of Cleaner Production, 156, 293-309. https://doi.org/10.1016/j.jclepro.2017.04.049

Rossi, M., Germani, M., & Zamagni, A. (2016). Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. Journal of Cleaner Production, 129, 361-373. https://doi.org/10.1016/j.jclepro.2016.04.051

Rungyuttapakorn, C., & Wongwatcharapaiboon, J. (2020). Eco-Design product development for alternative dishwashing detergent. 8-16.

Singh, P. K., & Sarkar, P. (2019). Eco-design Approaches for Developing Eco-friendly Products: A Review. En K. Shanker, R. Shankar, & R. Sindhwani (Eds.), Advances in Industrial and Production Engineering (pp. 185-192). Springer. https://doi.org/10.1007/978-981-13-6412-9_17

Ulrich, Karl & Eppinger, Steven. (2009). Diseño y desarrollo de productos (4°). Mc Graw Hill.

Valero, A., Valero, A., Calvo, G., & Ortego, A. (2018). Material bottlenecks in the future development of green technologies. Renewable and Sustainable Energy Reviews, 93, 178-200. https://doi.org/10.1016/j.rser.2018.05.041

Venegas, M. E., Navarro, A., & Alfaro, E. (2019). Modelo procedimental para la caracterización y valoración de residuos de aparatos eléctricos y electrónicos, RAEE. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, 87, 285-298. https://doi.org/10.18682/cdc.vi77

Wenzel, H., & Alting, L. (1999). Danish experience with the EDIP tool for environmental design of industrial products. EcoDesign ’99: First International Symposium On, 370-379. https://doi.org/10.1109/ECODIM.1999.747640

Wimmer, W., & Züst, R. (2001). ECODESIGN Pilot: Product Investigation, Learning and Optimization Tool for Sustainable Product Development (1°). Springer.

Zeng, X., Yang, C., Chiang, J. F., & Li, J. (2017). Innovating e-waste management: From macroscopic to microscopic scales. Science of The Total Environment, 575, 1-5. https://doi.org/10.1016/j.scitotenv.2016.09.078

Zhang, B.-Y., & Li, J. (2019). Design for Environmental Protection: Measuring the Appeal Factors of Green Product for Consumers. Ekoloji, 28(107), 1699-1707.