L'Ecodesign come metodo applicabile alla didattica del Design Industriale in Cile.
##submission.downloads##
DOI
https://doi.org/10.25267/P56-IDJ.2023.i3.01Informazioni
Abstract
L'articolo seguente assume la necessità di avvicinare la metodologia e i concetti generali dell'Ecodesign all'esercizio pratico del Design di Prodotti. Ciò alla luce delle linee guida derivanti dall'adattamento di determinate fasi dell'Analisi del Ciclo di Vita e dall'identificazione delle opportunità che emergono dall'interpretazione del contesto del paese, alla luce dell'implementazione obbligatoria delle diverse normative e requisiti finalizzati al miglioramento ambientale.
Viene proposto un modello procedurale applicabile all'insegnamento universitario del Design Industriale, nonché allo sviluppo della pratica professionale, con un focus particolare sulle Piccole e Medie Imprese. In questo modo, si sistematizzano gli aspetti decisionali per la pianificazione di prodotti con un approccio sostenibile e in linea con le istituzioni ambientali vigenti.
I risultati ottenuti evidenziano una risposta rapida nella risoluzione dei casi finalizzati all'ottimizzazione del Design. Si considerano a tal fine le linee guida derivanti dall'analisi di determinati indicatori ambientali e la loro applicazione alle strategie di Ecodesign, come possibili opportunità di miglioramento. Le soluzioni proposte considerano principalmente criteri di riduzione e riciclabilità dei materiali, ottimizzazione ed efficienza dello smontaggio di parti e componenti, nonché l'estensione della vita utile del prodotto. Questi ultimi fattori si traducono in prestazioni rilevanti per l'utente, in quanto costituiscono un'occasione di comunicazione prossima per la comprensione e la promozione dei principi che sostengono le buone pratiche ambientali.
Parole chiave
Downloads
Come citare
Licenza
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional
Riferimenti bibliografici
Abuzied, H., Senbel, H., Awad, M., & Abbas, A. (2020). A review of advances in design for disassembly with active disassembly applications. Engineering Science and Technology, an International Journal, 23 (3), 618-624. https://doi.org/10.1016/j.jestch.2019.07.003
Allen, J. D., Stevenson, P. D., Mattson, C. A., & Hatch, N. W. (2019). Over-Design Versus Redesign as a Response to Future Requirements. Journal of Mechanical Design, 141(3). https://doi.org/10.1115/1.4042335
Brezet, H., & van Hemel, C. (1997). Ecodesign: A promising approach to sustainable production and consumption (1°). U.N.E.P.
Brones, F. A., Carvalho, M. M. de, & Zancul, E. de S. (2017). Reviews, action and learning on change management for ecodesign transition. Journal of Cleaner Production 142, 8-22. https://doi.org/10.1016/j.jclepro.2016.09.009
Brundage, M. P., Bernstein, W. Z., Hoffenson, S., Chang, Q., Nishi, H., Kliks, T., & Morris, K. C. (2018). Analyzing environmental sustainability methods for use earlier in the product lifecycle. Journal of Cleaner Production, 187, 877-892. https://doi.org/10.1016/j.jclepro.2018.03.187
Carey, M., White, E. J., McMahon, M., & O’Sullivan, L. W. (2019). Using personas to exploit environmental attitudes and behaviour in sustainable product design. Applied Ergonomics, 78, 97-109. https://doi.org/10.1016/j.apergo.2019.02.005
Castro, P., Barahona, E., Celedón, M., Dossow, V., Droguett, M., & Fernández, K. (2022). Diseño de Rodado de baja complejidad. Taller de Diseño Ecológico, UTFSM. [Presentación para examinación semestral de asignatura]. Entrega Final de Taller Diseño Ecológico, Viña del Mar, Chile.
Chiu, M.-C., & Okudan, G. E. (2010). Evolution of Design for X Tools Applicable to Design Stages: A Literature Review. Volume 6: 15th Design for Manufacturing and the Lifecycle Conference; 7th Symposium on International Design and Design Education, 171-182. https://doi.org/10.1115/DETC2010-29091
De Aguiar, J., Oliveira, L. de, Silva, J. O. da, Bond, D., Scalice, R. K., & Becker, D. (2017). A design tool to diagnose product recyclability during product design phase. Journal of Cleaner Production, C(141), 219-229. https://doi.org/10.1016/j.jclepro.2016.09.074
Diago, L., Lacasa, E., Urmente, L., Millán, I., & Santolaya, J. L. (2019). Integrating Sustainability in Product Development Projects. En F. Cavas-Martínez, B. Eynard, F. J. Fernández Cañavate, D. G. Fernández-Pacheco, P. Morer, & V. Nigrelli (Eds.), Advances on Mechanics, Design Engineering and Manufacturing II (pp. 13-22). Springer International Publishing. https://doi.org/10.1007/978-3-030-12346-8_2
Diehl, J. C., & Brezet, H. (2005). Ecodesign Education: Personalized Design Knowledge Transfer. 11. ttps://www.researchgate.net/publication/310649594_ECODESIGN_EDUCATION_PERSONALISED_DESIGN_KNOWLEDGE_TRANSFER
Duan, Y., Gao, H., Li, J., & Huang, M. (2015). Formalizing Over Design and Under Design. International Journal of Multimedia and Ubiquitous Engineering, 10(12), 279-288.
Favi, C., Marconi, M., & Germani, M. (2019). Teaching eco-design by using LCA analysis of company’s product portfolio: The case study of an Italian manufacturing firm. Procedia CIRP, 80, 452-457. https://doi.org/10.1016/j.procir.2019.01.032
Gertsakis, J. (2001). Maximising Environmental Quality through EcoredesignTM. En Sustainable Solutions (p. 13). Routledge.
Gupta, R. K., Belkadi, F., & Bernard, A. (2017). Evaluation and management of customer feedback to include market dynamics into product development: Satisfaction Importance Evaluation (SIE) model. DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-25.08.2017, 4, 327-336.
IHOBE. (2000). Manual Práctico de Ecodiseño. Operativa de Implantación en 7 pasos (1°). IHOBE, S.A. https://www.euskadi.eus/contenidos/documentacion/ekodiseinu7/es_def/adjuntos/PUB-2000-014-f-C-001.pdf
Iuga, A., Popa, V., & Popa, L. (2017). Industrial Product Life Cycle Stages and Lifecycle Eco-design. En V. Majstorovic & Z. Jakovljevic (Eds.), Proceedings of 5th International Conference on Advanced Manufacturing Engineering and Technologies (pp. 365-374). Springer International Publishing. https://doi.org/10.1007/978-3-319-56430-2_27
Liu, C., & Zhao, Y. (2020). The Application of Lifecycle Design Strategies in the Interaction Design. En R. S. Goonetilleke & W. Karwowski (Eds.), Advances in Physical Ergonomics and Human Factors (pp. 369-376). Springer International Publishing. https://doi.org/10.1007/978-3-030-20142-5_37
Ma, J., Kremer, G. E. O., & Ray, C. D. (2018). A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage. Research in Engineering Design, 29(3), 469-487. https://doi.org/10.1007/s00163-017-0277-0
Manzano, M. G. (2022). Rol del Ecodiseño en la Industria Chilena del Plástico. Tekhné, 25(1), Article 1.
Miranda de Souza, V., & Borsato, M. (2016). Combining Stage-GateTM model using Set-Based concurrent engineering and sustainable end-of-life principles in a product development assessment tool. Journal of Cleaner Production, 112, 3222-3231. https://doi.org/10.1016/j.jclepro.2015.06.013
Rodrigues, V. P., Pigosso, D. C. A., & McAloone, T. C. (2017). Measuring the implementation of ecodesign management practices: A review and consolidation of process-oriented performance indicators. Journal of Cleaner Production, 156, 293-309. https://doi.org/10.1016/j.jclepro.2017.04.049
Rossi, M., Germani, M., & Zamagni, A. (2016). Review of ecodesign methods and tools. Barriers and strategies for an effective implementation in industrial companies. Journal of Cleaner Production, 129, 361-373. https://doi.org/10.1016/j.jclepro.2016.04.051
Rungyuttapakorn, C., & Wongwatcharapaiboon, J. (2020). Eco-Design product development for alternative dishwashing detergent. 8-16.
Singh, P. K., & Sarkar, P. (2019). Eco-design Approaches for Developing Eco-friendly Products: A Review. En K. Shanker, R. Shankar, & R. Sindhwani (Eds.), Advances in Industrial and Production Engineering (pp. 185-192). Springer. https://doi.org/10.1007/978-981-13-6412-9_17
Ulrich, Karl & Eppinger, Steven. (2009). Diseño y desarrollo de productos (4°). Mc Graw Hill.
Valero, A., Valero, A., Calvo, G., & Ortego, A. (2018). Material bottlenecks in the future development of green technologies. Renewable and Sustainable Energy Reviews, 93, 178-200. https://doi.org/10.1016/j.rser.2018.05.041
Venegas, M. E., Navarro, A., & Alfaro, E. (2019). Modelo procedimental para la caracterización y valoración de residuos de aparatos eléctricos y electrónicos, RAEE. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, 87, 285-298. https://doi.org/10.18682/cdc.vi77
Wenzel, H., & Alting, L. (1999). Danish experience with the EDIP tool for environmental design of industrial products. EcoDesign ’99: First International Symposium On, 370-379. https://doi.org/10.1109/ECODIM.1999.747640
Wimmer, W., & Züst, R. (2001). ECODESIGN Pilot: Product Investigation, Learning and Optimization Tool for Sustainable Product Development (1°). Springer.
Zeng, X., Yang, C., Chiang, J. F., & Li, J. (2017). Innovating e-waste management: From macroscopic to microscopic scales. Science of The Total Environment, 575, 1-5. https://doi.org/10.1016/j.scitotenv.2016.09.078
Zhang, B.-Y., & Li, J. (2019). Design for Environmental Protection: Measuring the Appeal Factors of Green Product for Consumers. Ekoloji, 28(107), 1699-1707.