Concepciones epistemológicas sobre enlace químico en la práctica profesional de los profesores de química
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i3.3602Información
Resumen
El análisis epistemológico de los conceptos químicos con base en los fundamentos de la filosofía de la química conducen a una transformación en sus formas de enseñanza y evidencian la necesidad de repensar la didáctica de la química. Sin embargo, hay pocas investigaciones acerca de las concepciones epistemológicas que tienen los profesores frente a los conceptos químicos, así como sobre los recursos didácticos y tecnológicos que emplean para explicar estos conceptos. Este artículo tiene como propósito presentar las concepciones sobre enlace químico empleadas por los profesores en ejercicio que cursan estudios de posgrado durante su práctica profesional. Los datos se recolectaron mediante dos cuestionarios abiertos, cuyos resultados mostraron una fuerte dependencia en la interpretación matemática de la diferencia de electronegatividad (Δχ) para explicar este concepto, así como el uso de referencias antropomórficas y modelos simplificados. Las aproximaciones teóricas en torno de la naturaleza del conocimiento químico permitieron a los profesores reflexionar críticamente sus concepciones sobre enlace químico, acercándolos a una perspectiva modelo–teórica relevante para esta investigación.
Palabras clave
Descargas
Cómo citar
Licencia
Derechos de autor 2025 Ricardo Aponte-Buitrago, Fredy Garay Garay

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as podrán conservar sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) una vez el manuscrito sea aceptado, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto). También se permite la difusión de la versión pre-print de los artículos a partir del momento en que son aceptados o publicados
Reconocimiento-NoComercial
CC BY-NC
Citas
Accorinti, H. L., y Labarca, M. G. (2020). Commentary on the models of electronegativity. Journal of Chemical Education, 97(10), 3474-3477.
Atkins, P. (1999). Chemistry: the great ideas. Pure and Applied Chemistry, 71(6), 927-929.
Bader, R. (2009). Bond Paths Are Not Chemical Bonds. The Journal of Physical Chemistry, 113(38), 10391-10396.
Bader, R., Hernández-Trujillo, J. y Cortés-Guzman, F. (2006). Chemical Bonding: From Lewis to Atoms in Molecules. Journal of Computational Chemistry, 28(1), 4 -14.
Brown, T., LeMay Jr, H., Murphy, C., Bursten, B. y Woodward, P. (2014). Química. La Ciencia Central (Decimosegunda ed.). Pearson Education.
Cairns, M. (2023). Electronegativity as a new case for emergence and a new problem for reductionism. Foundations of Chemistry, 27(1), 1-16.
Chamizo, J. (2010). El conocimiento químico. En J. A. Chamizo (Ed.), Historia y Filosofía de la Química. Aportes para la enseñanza (págs. 210-236). Siglo XXI Editores.
Coulson, C. (1955). The contributions of wave mechanics to chemistry. Journal of the Chemical Society, 2069-2084.
Dhindsa, H. S., y Treagust, D. F. (2014). Prospective pedagogy for teaching chemical bonding for smart and sustainable learning. Chemistry Education Research and Practice, 15(4), 435-446.
Erduran, S. y Mugaloglu, E. (2014). Philosophy of Chemistry in Chemical Education: Recent Trends and Future Directions. En M. Matthews, International Handbook of Research in History (págs. 287-315). Springer.
Erduran, S. y Scerri, E. (2002). The Nature of Chemical Knowledge and Chemical Education. En J. Gilbert (Ed), Chemical Education: Towards Research-based Practice (págs. 7-27). Kluwer Academic Publishers.
Fatokun, K. V. F. (2016). Instructional misconceptions of prospective chemistry teachers in chemical bonding. International Journal of Science and Technology Education Research, 7(2), 18-24.
García-Franco, A. y Garritz, A. (2006). Desarrollo de una unidad didáctica: El estudio del enlace químico en el bachillerato. Enseñanza de las Ciencias, 24(1), 111-124.
Gavroglu, K. y Simões, A. (2012). Quantum Chemistry qua Programming: Computers and the Cultures of Quantum Chemistry. The MIT Press.
Gillespie, R. (1997). The Great Ideas of Chemistry. Journal of Chemical Education, 74(7), 862-864.
Gillespie, R. (2006). El enlace químico y la geometría molecular. Educación química, 17(4e), 264-273.
Gillespie, R. J., y Popelier, P. L. A. (2001). Chemical bonding and molecular geometry: From Lewis to electron densities. Oxford University Press.
Hendry, R. (2008). Two concepts of the chemical bond. Philosophy of Science, 75, 909-920.
Hunter, K. H., Rodriguez, J.-M. G., y Becker, N. M. (2022). A review of research on the teaching and learning of chemical bonding. Journal of Chemical Education, 99(7), 2451-2464.
Jensen, W. (1998). Logic, History, and the Chemistry Textbook I. Does Chemistry Have a Logical Structure? Journal of Chemical Education, 75(6), 679-687.
Joki, J., y Aksela, M. (2018). The challenges of learning and teaching chemical bonding at different school levels using electrostatic interactions instead of the octet rule as a teaching model. Chemistry Education Research and Practice, 19(3), 932-953.
Labarca, M. (2011). La Filosofía de la Química en la Filosofía de la Ciencia Contemporánea. Redes, 11(021), 155-171.
Leach, M. R. (2013). Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form. Foundations of Chemistry, 15(1), 13-29.
Lee, R. y Cheng, M. (2014). The Relationship Between Teaching and Learning of Chemical Bonding and Structures. En C. T. Bruguière, Topics and Trends in Current Science Education: 9th ESERA Conference Selected Contributions (págs. 403-417). Springer.
Levy Nahum, T., Mamlok-Naaman, R., Hofstein, A., y Kronik, L. (2008). A new “bottom-up” framework for teaching chemical bonding. Journal of Chemical Education, 85(12), 1680-1685.
Levy Nahum, T., Mamlok-Naaman, R., Hofstein, A., y Taber, K. (2010). Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179-207.
Levy Nahum, T., Mamlok-Naaman, y Hofstein, A. (2013). Teaching and Learning of the Chemical Bonding Concept: Problems and Some Pedagogical Issues and Recommendations. En G. T. Sevian, Concepts of Matter in Science Education (págs. 373-390). Springer Dordrecht.
Lombardi, O. y Labarca, M. (2005). The Ontological Autonomy Of The Chemical World. Foundations of Chemistry, 7, 125-148.
Lombardi, O. y Martínez, J. (2012). Entre mecánica cuántica y estructuras químicas: ¿a qué refiere la química cuántica? Scientiæ studia, 10(4), 649-670.
Matus, L., Benarroch, A., y Nappa, N. (2011). La modelización del enlace químico en libros de texto de distintos niveles educativos. Revista Electrónica de Enseñanza de las Ciencias, 10(1), 178-201.
Needham, P. (2014). The source of chemical bonding. Studies in History and Philosophy of Science, 45, 1-13.
Newman, M. (2013). Emergence, supervenience, and introductory chemical education. Science & Education, 22(7), 1655-1667.
Ochiai, H. (2020). Understanding molecular structure requires constructive realism. Foundations of Chemistry, 22, 457-465.
Ochiai, H. (2025). Why do chemists take the chemical bond as real? Foundations of Chemistry, 27, 173-181.
Pauling, L. (1928). The Application of the Quantum Mechanics to the Structure of the Hydrogen Molecule and Hydrogen Molecule-Ion and to Related Problems. Chemical Reviews, (2), 173-213.
Piechota, E. J., y Meyer, G. J. (2019). Introduction to electron transfer: Theoretical foundations and pedagogical examples. Journal of Chemical Education, 96(11), 2450-2466.
Pizzochero, M. (2025). The Fuzzy Logic of the Chemical Bond. Journal for General Philosophy of Science, 56(2), 1-9.
Rubiano, D (2017) El estatuto ontológico de la concepción estructural del enlace químico: aportes a la didáctica de la química. [Tesis de Maestría, Universidad Pedagógica Nacional]. Repositorio Institucional – Universidad Pedagógica Nacional.
Ruedenberg, K. y Schmidt, M. (2007). Why does electron sharing lead to covalent bonding? A variational analysis. Journal of Computational Chemistry, 28(1), 391-410.
Ruthenberg, K. y Martínez-González, J. (2017). Electronegativity and its multiple faces: persistence and measurement. Foundations of Chemistry, 19, 61-75.
Ruthenberg, K. y Mets, A. (2020). Chemistry is pluralistic. Foundations of Chemistry, 22(3), 403-419.
Scerri, E. (2023). A commentary on Weisberg’s critique of the ‘structural conception’ of chemical bonding. Foundations of Chemistry, 25, 253-264.
Scerri, E. y McIntyre, L. (1997). The Case of the Philosophy of Chemistry. Synthese, 111, 213-232.
Seifert, V. (2023). The Chemical Bond is a Real Pattern. Philosophy of Science, 90(2), 269-287.
Shimajiri, T., Kawaguchi, S., Suzuki, T. y Y, I. (2024). Direct evidence for a carbon–carbon one-electron σ-bond. Nature, 634, 347-351.
Šima, J. (2016). Structure-related melting and boiling points of inorganic compounds. Foundations of Chemistry, 18, 67-79.
Sproul, G. (2001). Electronegativity and Bond Type: Predicting Bond Type. Journal of Chemical Education, 78(3), 387-390.
Taber, K. (1997). Student understanding of ionic bonding: molecular versus electrostatic thinking? School Science Review, 78(285), 85-95.
Taber, K. (2001). Building the Structural Concepts of Chemistry: Some Considerations From Educational Research. Chemistry Education: Research and Practice in Europe, 2(2), 123-158.
Taber, K. y Coll, R. (2002). Bonding. En J. Gilbert., Chemical Education: Towards Research-based Practice (págs. 213-234). Kluwer Academic Publishers.
Taber, K. S., Tsaparlis, G., y Nakiboğlu, C. (2012). Student Conceptions of Ionic Bonding: Patterns of thinking across three European contexts. International Journal of Science Education, 34(18), 2843-2873.
Talanquer, V. (2010). Pensamiento intuitivo en química: suposiciones implícitas y reglas heurísticas. Enseñanza de las Ciencias, 28(2), 165-174.
Tsaparlis, G., Pappa, E. T., y Byers, B. (2018). Teaching and learning chemical bonding: Research based evidence for misconceptions and conceptual difficulties experienced by students in upper secondary schools and the effect of an enriched text. Chemistry Education Research and Practice, 19(4), 1253-1269.
Vemulapalli, K. y Byerly, H. (1999). Remnants of Reductionism. Foundations of Chemistry, 1, 17-41.
Viswanathan, B., y Gulam Razul, M. S. (2022). Electronegativity provides the relationship between formal charge, oxidation state, and actual charge. Foundations of Chemistry, 25(1), 5-28.
Weisberg, M. (2008). Challenges to the structural conception of chemical bonding. Philosophy of Science, 75, 932-946.
Zohar, A. R., y Levy, S. T. (2019). Attraction vs. repulsion – learning about forces and energy in chemical bonding with the ELI Chem simulation. Chemistry Education Research and Practice, 20(4), 667-684.

