Análisis epistemológico del currículum LOMLOE de Química de la ESO de la Comunitat Valenciana
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i2.2304Información
Resumen
Este estudio analiza los contenidos que especifica el nuevo currículum de Química de la ESO de la Comunitat Valenciana, así como su distribución a lo largo de la etapa, comparándolo con el currículum del Ministerio de Educación. En su estructura, dos ideas básicas se desarrollan cíclicamente a lo largo de los tres cursos: sustancia y reacción química, con la ayuda de la presentación progresiva de diferentes modelos. Esta evolución curricular está basada en la investigación educativa específica de la química, otorgando una importante relevancia a la competencia lingüística. Además, también enfatiza en la naturaleza del conocimiento científico y presta suficiente atención a aspectos de índole socio científico.
Palabras clave
Descargas
Licencia
Derechos de autor 2024 Juan Quílez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as podrán conservar sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) una vez el manuscrito sea aceptado, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto). También se permite la difusión de la versión pre-print de los artículos a partir del momento en que son aceptados o publicados
Reconocimiento-NoComercial
CC BY-NC
Citas
Atanassova, M. (2015). Naming of Chemical Elements. Chemistry: Bulgarian Journal of Science Education, 24(1), 125-144.
Bueso, A., Furió, C. y Mans, C. (1988). Interpretación de las reacciones de oxidación-reducción por los estudiantes. Primeros resultados. Enseñanza de las Ciencias, 6(3), 244-250. https://raco.cat/index.php/Ensenanza/article/view/51101
Bulman, L. (1985). Teaching language and study skills in secondary science. Heinemann.
Çalýk, M., Ayas, A. y Ebenezer, J. V. (2005). A review of solution chemistry studies: Insights into students’ conceptions. Journal of Science Education and Technology, 14, 29–50. https://doi.org/10.1007/s10956-005-2732-3
Carrascosa, J., Furió, C. y Gil, D. (1984). Criterios básicos para la elaboración de un currículum de Física y Química. Enseñanza de las Ciencias, 2, 103-110. https://raco.cat/index.php/Ensenanza/article/view/50710
Chi, M. T. H., Slotta, J. D. y de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27–43. https://doi.org/10.1016/0959-4752(94)90017-5
Cid, R. (2009). El Congreso de Karlsruhe: paso definitivo hacia la química moderna. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6(3), 396-407. http://www.redalyc.org/articulo.oa?id=92013010006
Conselleria de Educación, Cultura y Deporte (2022). DECRETO 107/2022, por el que se establece la ordenación y el currículo de Educación Secundaria Obligatoria. DOGV Num. 9403.
de Jong, O. y Taber, K. S. (2014). The Many Faces of High School Chemistry. En N. G. Lederman y S. K. Abell (Eds) Handbook of Research on Science Education, pp. 457–480. Vol. 2. Routledge.
de Vos, W. y Verdonk, A. H. (1985). A New Road to Reactions. Part 1. Journal of Chemical Education, 62(3), 238-240. https://doi.org/10.1021/ed062p238
Elguero. J. (2007). España y los elementos de la tabla periódica. Anales de Química, 103, 70-76. https://analesdequimica.es/index.php/AnalesQuimica/article/view/1561
Gallego, R., Pérez, R. y Gallego, P. (2015). Del modelo científico del flogisto al modelo de la oxidación. El concepto de frontera. Educación Química, 24, 242-249. https://doi.org/10.1016/j.eq.2015.03.001
García, J. J. y Perales, F. J. (2007). ¿Comprenden los estudiantes las gráficas cartesianas usadas en los textos de ciencias? Enseñanza de las Ciencias, 25(1), 107-132. https://raco.cat/index.php/Ensenanza/article/view/87865
García-Martínez, J. (2019). Controversies, compromises and the common chemical language. Nature Chemistry, 11, 853-856. https://doi.org/10.1038/s41557-019-0336-4
Gardner, P. L. (1980a). Difficulties with non-technical scientific vocabulary amongst secondary school students in the Philippines. The Australian Science Teachers’ Journal, 26(2), 82–90.
Gardner, P. L. (1980b). Identification of specific difficulties with logical connectives in science among secondary school students. Journal of Research in Science Teaching, 17(3), 223–229. https://doi.org/10.1002/tea.3660170306
Giunta, C.J.; Mainz, V.V.; Girolami, G.S. (2021). 150 Years of the Periodic Table. Springer.
Goya, P. y Román, P. (2005). Wolfram vs. tungsten. Chemistry International - Newsmagazine for IUPAC, 27(4), 26-28. https://doi.org/10.1515/ci.2005.27.4.26
Hashweh, M. Z. (2016). The complexity of teaching density in middle school. Research in Science & Technological Education, 34(1), 1–24. https://doi.org/10.1080/02635143.2015.1042854
Harrison, A.G. y Treagust, D. F. (2002). The particulate nature of matter: challenges in understanding the submicroscopic world. En de Jong, O., Justi, R., Treagust, D. F. y van Driel, J. H. (Eds.). Chemical education: towards research-based practice (pp. 189–212). Kluwer.
Hartman, J. R., Nelson, E. A. y Kirschner, P. A. (2022). Improving student success in chemistry through cognitive science. Foundations of Chemistry, 24(2), 239-261. https://doi.org/10.1007/s10698-022-09427-w
Hendry, R. F. (2021). Elements and (first) principles in chemistry. Synthese, 198 (Suppl. 14), S3391–S3411. https://doi.org/10.1007/s11229-019-02312-8
Hierrezuelo, J. y Bullejos, J. (1995). Ciencias de la naturaleza III: tercer curso de Educación Secundaria Obligatoria. MEC.
Hirsch, E. D. (2016). Why Knowledge Matters. Rescuing Our Children from Failed Educational Theories. HEP.
Hoeg, D. G. y Bencze, J. L. (2017). Values underpinning STEM Education in the USA: An analysis of the Next Generation Science Standards. Science Education, 101(2), 278–301. https://doi.org/10.1002/sce.21260
Justi, R. y Gilbert, J. K. (2002). Models and modelling in chemical education. En de Jong, O., Justi, R., Treagust, D. F. y van Driel, J. H. (Eds.). Chemical education: towards research-based practice (pp. 47–68). Kluwer.
Johnson, P. y Tymms, P. (2011).The emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48(8), 849–877. https://doi.org/10.1002/tea.20433
Johnstone, A. H. (1991). Why is science so difficult to learn? Things are seldom what they seem. Journal of Computer Assistance Learning, 7, 76-83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x
López-Rupérez, F. (2022). El enfoque del currículo por competencias. Un análisis de la LOMLOE. Revista Española de Pedagogía, 80 (281), 55-68. https://doi.org/10.22550/REP80-1-2022-05
Ministerio de Educación y Formación Profesional (2022). Real Decreto 217/2022, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. BOE Núm. 76.
Monk, M. y Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: a model for the development of pedagogy. Science Education, 81, 405–424. https://doi.org/10.1002/(SICI)1098-237X
Ngai, C., Sevian, H. y Talanquer, V. (2014) What is this Substance? What Makes it Different? Mapping Progression in Students’ Assumptions about Chemical Identity. International Journal of Science Education, 36(14), 2438-2461. https://doi.org/10.1080/09500693.2014.927082
Niaz, M. (2009). Critical Appraisal of Physical Science as a Human Enterprise. Springer.
Niaz, M. (2016). Chemistry Education and Contributions from History and Philosophy of Science. Springer.
Niaz, M. y Maza, A. (2011). Nature of Science in General Chemistry Textbooks. Springer.
Nurrenbern, S. y Pickering, M. (1987). Concept learning vs. problem solving: Is there a difference? Journal of Chemical Education, 64(6), 508–510. https://doi.org/10.1021/ed064p508
Osborne, J. F. (2019). Not “hands on” but “minds on”. Science Education, 103(5), 1280–1283. https://doi.org/10.1002/sce.21543
Özmen, H. y Ayas, A. (2003). Students’ difficulties in understanding of the conservation of matter in open and closed-system chemical reactions. Chemistry Education Research and Practice, 4(3), 279-290. https://pubs.rsc.org/en/content/articlehtml/2003/rp/b3rp90017g
Pekdag, B. y Azizoglu, N. (2013). Semantic mistakes and didactic difficulties in teaching the “amount of substance” concept: a useful model. Chemistry Education Research and Practice, 14, 117-129. https://doi.org/10.1039/C2RP20132A
Pellón, I. (2012). El Atomismo en Química. Un Nuevo Sistema de Filosofía Química. Universidad de Alicante.
Potari, D. y Spiliotopoulou, V. (1996). Children’s Approaches to the Concept of Volume. Science Education, 80(3), 341-360. https://doi.org/10.1002/(SICI)1098-237X
Quílez, J. (2016a). El lenguaje de la ciencia como obstáculo de aprendizaje de los conocimientos científicos y propuestas para superarlo. Revista Brasileira de Pesquisa em Educação em Ciências, 16(2), 449–476. https://periodicos.ufmg.br/index.php/rbpec/article/view/4383
Quílez, J. (2016b). ¿Es el profesor de Química también profesor de Lengua? Educación Química, 27(2), 105–114. http://dx.doi.org/10.1016/j.eq.2015.10.002
Quílez, J. (2019). A categorisation of the terminological sources of student difficulties when learning chemistry. Studies in Science Education, 55(2), 121-167. https://doi.org/10.1080/03057267.2019.1694792
Quílez, J. (2021a). Supporting Spanish 11th grade students to make scientific writing when learning chemistry in English: the case of logical connectives. International Journal of Science Education, 43(9), 1459-1482. https://doi.org/10.1080/09500693.2021.1918794
Quílez, J. (2021b). Aproximación histórica a momentos clave en el desarrollo de la química. Oportunidades para su enseñanza. Anales de Química RSEQ, 117(2), 109-121.
Quílez, J. (2022). El movimiento STEM en el currículum: origen, fundamentación y análisis crítico. Anales de Química RSEQ, 118(3), 199-205.
Ramberg, P. J. (2000). The Death of Vitalism and The Birth of Organic Chemistry: Wohler's Urea Synthesis and the Disciplinary Identity of Organic Chemistry. Ambix, 47(3), 170-195. 10.1179/amb.2000.47.3.170
Raviolo, A., Schroh, N. T. y Farré, A. (2022). La comprensión de estudiantes de primer año de universidad del concepto de concentración expresada en gramos por litro. Enseñanza de las Ciencias, 40(1), 143-159. https://doi.org/10.5565/rev/ensciencias.3267
Renström, L, Anderson, B. y Marton, F. (1990). Students’ conceptions of matter. Journal of Educational Psychology, 82(3), 555-569. https://doi.org/10.1037/0022-0663.82.3.555
Rees, S.; Kind, V. y Newton, D. (2019). Meeting the Challenge of Chemical Language Barriers in University Level Chemistry Education. Israel Journal of Chemistry, 59(6–7), 470–477. https://doi.org/10.1002/ijch.201800079
Ringnes, V. (1989). Origin of the names of chemical elements. Journal of Chemical Education, 66, 731–738. https://doi.org/10.1021/ed066p731
Scerri, E. (2007). The Periodic Table. Its Story and Its Significance. OUP.
Scerri, E. y Ghibaudi, E. (2020). What is a Chemical Element? OUP.
Sevian, H. y Talanquer, V. (2014). Rethinking chemistry: a learning progression on chemical thinking. Chemistry Education Research and Practice, 15, 10-23. https://doi.org/10.1039/c3rp00111c
Silva J. R. y Amaral E. M. (2013). Proposta para um Perfil Conceitual de substância. Revista Brasileira de Pesquisa em Educação em Ciências, 13(3), 53–72. https://periodicos.ufmg.br/index.php/rbpec/article/view/4271
Stavy, R. (1988). Children's conception of gases. International Journal of Science Education, 10(5), 553-560. https://doi.org/10.1080/0950069880100508
Stavy, R. y Stachel, D. (1985). Children's ideas about solid and liquid. European Journal of Science Education, 7, 407-421. https://doi.org/10.1080/0140528850070409
Sukopp, T. (2018). Discoveries of Oxygen and the “Chemical Revolution” in the Context of European Scientific Networks. En B. Schweitzer, T. Sukopp (Eds.) Knowledge Communities in Europe. Exchange, Integration and Its Limits (pp. 15-47). Springer.
Taber, K. S. (2015a). Epistemic relevance and learning chemistry in an academic context. En I. Eilks y A. Hofstein (Eds.). Relevant Chemistry Education: From Theory to Practice (pp. 79-100). Sense.
Taber, K.S. (2015b). The role of «practical» work in teaching and learning chemistry. School Science Review, 96(357), 75-83.
Taber, K. S.(2024). Understanding the octet framework. Chemistry Education Research and Practice, aceptado. https://doi.org/10.1039/D3RP00232B
Talanquer, V. (2023). ¿Qué hemos aprendido sobre el razonamiento de los estudiantes de química? Educación Química, 34(4), 3-15. https://doi.org/10.22201/fq.18708404e.2023.4.86364
Tang, K. S. (2021). Discourse strategies for science teaching & learning: Research and practice. Routledge.
Tricot, A., Sweller, J. (2014). Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work. Educational Psychology Review, 26, 265–283. https://doi.org/10.1007/s10648-013-9243-1
Tsaparlis, G. y Sevian, H. (2013). Concepts of matter in science education. Springer.
Viana, H.E.B. y Porto, P.A. (2010). The Development of Dalton’s Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry. Science & Education, 19, 75–90. https://doi.org/10.1007/s11191-008-9182-2
Watson, R., Prieto, T. y Dillon, J. (1997). Consistency in students' explanations about combustion. Science Education, 81, 425-444. https://doi.org/10.1002/(SICI)1098-237X
Wheelahan. L. (2010). Why Knowledge Matters in Curriculum. A Social Realist Argument. Routledge.
Wellington, J. y Osborne, J. (2001). Language and literacy in science education. OUP.
Xu, L. y Clark, D. (2012). Student difficulties in learning density: a distributes cognition perspective. Research in Science Education, 42, 769-789. https://doi.org/10.1007/s11165-011-9232-7
Zhang, L. (2016). Is inquiry-based science teaching worth the effort? Some thoughts worth considering. Science & Education, 25(7), 897–915. https://doi.org/10.1007/s11191-016-9856-0
Zhang, L., Kirschner, P.A., Cobern, W.W. y Sweller, J. (2022). There is an Evidence Crisis in Science Educational Policy. Educational Psychology Review, 34, 1157–1176. https://doi.org/10.1007/s10648-021-09646-1
Ziman, J. (1980). Teaching and learning about science and society. CUP.