Bioacumulación de PS-NPs en cuerpo humano: pensamiento espontáneo estudiantil y el diseño de secuencias didácticas

Información

Fundamentos y líneas de trabajo
1106
Publicado: 21-01-2026

Autores/as

Resumen

Actualmente, los plásticos se utilizan ampliamente debido a sus múltiples propiedades. Sin embargo, a pesar de sus ventajas, la utilización ha aumentado la generación de residuos sólidos desechados al medio ambiente. En este contexto, el objetivo de esta investigación –con fines más amplios– fue describir las características del pensamiento espontáneo de estudiantes sobre el fenómeno natural de interés científico y valor educativo de la bioacumulación de nano-plásticos de poliestireno (PS-NPs) en el cuerpo humano, para su utilización en el diseño de secuencias didácticas. Participaron 30 estudiantes de tercer año de bachillerato y la recolección y análisis de datos siguió varias etapas hasta lograr un Modelo Estudiantil Inicial a ser considerado. En términos ontológicos, no se presentan expresiones de entidades que –con propiedades bien definidas, sobre todo las biológicas– establezcan relaciones entre ellas y causen un efecto y expliquen el fenómeno con pertinencia y especificidad. Así, las inferencias son genéricas y contribuyen poco a justificar lo que podría suceder después de varios años.

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Agencias de apoyo  

El presente trabajo fue realizado con apoyo de la Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (processo APQ-05218-23)

Cómo citar

Bossolani-Kiill, K., Pereira, C. M., & López-Mota, Ángel D. (2026). Bioacumulación de PS-NPs en cuerpo humano: pensamiento espontáneo estudiantil y el diseño de secuencias didácticas. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 23(1), 1106. Recuperado a partir de https://revistas.uca.es/index.php/eureka/article/view/11825

Citas

Aliberas, J., Gutiérrez, R. y Izquierdo, M. (2021). Identifying changes in a student’s mental models and stimulating intrinsic motivation for learning during a dialogue regulated by the teachback technique: A case study. Research in Science Education, 51, 617–645. https://doi.org/10.1007/s11165-018-9810-z

Artigue, M. (1995). Ingeniería didáctica. En P. Gómez (Ed.), Ingeniería didáctica en educación matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas (pp. 33–59). Grupo Editorial Iberoamérica.

Artigue, M. (2002). Ingénierie didactique: Quel rôle dans la recherche didactique aujourd’hui? Les Dossiers des Sciences de l’Éducation, 8(1), 59–72. https://doi.org/10.3406/dsedu.2002.1010

Cella, C., La Spina, R., Mehn, D., Fumagalli, F., Ceccone, G., Valsesia, A. y Gilliland, D. (2022). Detecting micro- and nanoplastics from food packaging: Challenges and analytical strategies. Polymers, 14, 1238. https://doi.org/10.3390/polym14061238

Concari, S. B. (2001). Las teorías y modelos en la explicación científica: Implicancias para la enseñanza de las ciencias. Ciência & Educação, 7(1), 85–94. https://doi.org/10.1590/S1516-73132001000100006

Cortés-Ross, E. y Juárez-Moreno, K. O. (2023). Estudio de los efectos toxicológicos de los nanoplásticos en células de colon. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 16(31), 1e–20e. https://doi.org/10.22201/ceiich.24485691e.2023.31.69782

Cottom, J. W., Cook, E. y Velis, C. A. (2024). A local-to-global emissions inventory of macroplastic pollution. Nature, 633, 101–108.

Couso, D. (2011). Las secuencias didácticas en la enseñanza y el aprendizaje de las ciencias: Modelos para su diseño y validación. En A. Caamaño (Coord.), Didáctica de la física y la química (Vol. II, pp. 57–84). Graó.

Duit, R. (2006). La investigación sobre enseñanza de las ciencias. Un requisito imprescindible para mejorar la práctica educativa. Revista Mexicana de Investigación Educativa, 11(30), 741–770.

Duit, R. (2007). Science education research internationally: Conceptions, research, methods, domains of research. Eurasia Journal of Mathematics, Science & Technology Education, 3(1), 3–15.

Duit, R., Gropengießer, H., Kattmann, U., Komorek, M. y Parchmann, I. (2012). The model of educational reconstruction: A framework for improving teaching and learning science. En J. Doris & D. Justin (Eds.), Science education research and practice in Europe: Retrospective and prospective (Vol. 5, pp. 13–37). Sense Publishers.

Fontes, B. L. M., Souza, L. C. S., Oliveira, A. P. S. S., Fonseca, R. N., Cavalcanti Neto, M. P. y Pinheiro, C. R. (2024). The possible impacts of nano- and microplastics on human health: Lessons from experimental models across multiple organs. Journal of Toxicology and Environmental Health, 27(4), 153–187.

Gambino, I., Bagordo, F., Grassi, T., Panico, A. y De Donno, A. (2022). Occurrence of microplastics in tap and bottled water: Current knowledge. International Journal of Environmental Research and Public Health, 19, 5283. https://doi.org/10.3390/ijerph19095283

Gewert, B., Plassmann, M. y MacLeod, M. (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science: Processes & Impacts, 17, 1513. https://doi.org/10.1039/C5EM00207A

Gutiérrez, R. (2007). Sistemas de creencias, modelos mentales y cambio conceptual. Boletín de Estudios e Investigación, 573–585.

Gutiérrez, R. (2014). Lo que los profesores de ciencia conocen y necesitan conocer acerca de los modelos: Aproximaciones y alternativas. Bio-grafía: Escritos sobre la biología y su enseñanza, 7(13), 37–66. https://doi.org/10.17227/20271034.vol.7num.13bio-grafia37.66

Han, S.-W., Choi, J. y Ryu, K.-Y. (2024). Recent progress and future directions of the research on nanoplastic-induced neurotoxicity. Neural Regeneration Research, 19(2), 331–335.

Jeong, J., Im, J. y Choi, J. (2024). Integrating aggregate exposure pathway and adverse outcome pathway for micro/nanoplastics: A review on exposure, toxicokinetics, and toxicity studies. Ecotoxicology and Environmental Safety, 272, 116022. https://doi.org/10.1016/j.ecoenv.2024.116022

Juuti, K. y Lavonen, J. (2006). Design-based research in science education: One step towards methodology. NorDiNa, 4, 54–68.

Kadac-Czapska, K., Knez, E., Gierszewska, M., Olewnik-Kruszkowska, E. y Grembecka, M. (2023). Microplastics derived from food packaging waste—Their origin and health risks. Materials, 16(2), 674. https://doi.org/10.3390/ma16020674

López-Mota, A. D. (Coord.). (2019). Modelos científicos escolares: El caso de la obesidad humana. UPN.

López-Mota, A. D. y Moreno-Arcuri, G. (2014). Sustentación teórica y descripción metodológica del proceso de obtención de criterios de diseño y validación para secuencias didácticas basadas en modelos: El caso del fenómeno de la fermentación. Bio-grafía: Escritos sobre la biología y su enseñanza, 7(13), 109–126.

Luo, Y., Gibson, C. T., Chuah, C., Tang, Y., Naidu, R. y Fang, C. (2022). Raman imaging for the identification of teflon microplastics and nanoplastics released from non-stick cookware. Science of the Total Environment, 851(Pt. 2), 158293. https://doi.org/10.1016/j.scitotenv.2022.158293

Minayo, M. C. S. O. (2010). Desafio do conhecimento: Pesquisa qualitativa em saúde (14.ª ed.). Abrasco.

Moreno-Arcuri, G., López-Mota, A. D. y Orrego-Cardozo, M. (2021). Uso de una herramienta teórico-metodológica para postular aprendizajes curriculares esperados: El caso de la obesidad. En XVI Congreso Nacional de Investigación Educativa. COMIE. https://www.comie.org.mx/congreso/memoriaelectronica/v16/doc/2164

Ojinnaka, D. y Aw, M. M. (2020). Micro and nano plastics: A consumer perception study on the environment, food safety threat and control systems. Biomedical Journal of Science & Technical Research, 31(2). https://doi.org/10.26717/BJSTR.2020.31.005064

Roslan, N. S., Lee, Y. Y., Ibrahim, Y. S., Anuar, S. T., Yusof, K. M. K. K., Lai, L. A. y Brentnall, T. (2024). Detection of microplastics in human tissues and organs: A scoping review. Journal of Global Health, 14, 04179. https://doi.org/10.7189/jogh.14.04179

Santos, R. S. y Souza, R. R. (2023). Panorama dos impactos causados pelo descarte inadequado dos resíduos sólidos na biodiversidade. Journal of Environmental Analysis and Progress, 8(2), 62–69. https://doi.org/10.24221/jeap.8.2.2023.5284.062-069

Shi, Q., Tang, J., Liu, R. y Wang, L. (2021). Toxicity in vitro reveals potential impacts of microplastics and nanoplastics on human health: A review. Critical Reviews in Environmental Science and Technology, 52(21), 3863–3895. https://doi.org/10.1080/10643389.2021.1951528

Souza, A. B., Santos, A. C. C., Santana, J. A. y Cruz, M. C. P. (2022). Plástico no mar: Polímeros à deriva! Química Nova na Escola, 43(3), 320–329. https://doi.org/10.21577/0104-8899.20160284

Valente, J. V., Barros, R. A., Cristovão, A. C., Pastorinho, M. R. y Sousa, A. C. A. (2021). Avaliação do potencial citotóxico de microplásticos em linhas celulares intestinais, hepáticas e neuronais. Revista Captar: Ciência e Ambiente para Todos, 10, 4–4. https://proa.ua.pt/index.php/captar/article/view/23950/18678

Virii, J. y Savinainen, A. (2008). Teaching-learning sequences: A comparison of learning demand analysis and educational reconstruction. Latin American Journal of Physics Education, 2(2), 80–86.