General relativity in primary and secondary education: a systematic review

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i2.2303

Info

Science education today
2303
Published: 27-05-2024
PlumX

Authors

Abstract

General relativity is a theory that has been reported more frequently in the media in recent years due to discoveries in astrophysics and cosmology, such as the detection of gravitational waves and images of black holes. However, this theory is scarcely taught in primary and secondary education despite its validity and applicability in various areas. This work aims to analyze the incorporation of general relativity in these educational levels. Thus, the PRISMA protocol is applied in a systematic review of scientific articles between 2012 and 2022, provided by databases such as Web of Science, Scopus, and Dialnet. Research articles in Spanish, English, and Portuguese were selected to account for pedagogical interventions addressing concepts and applications of general relativity for the training of primary and secondary education students. Forty-three studies were analyzed in which qualitative and quantitative treatments of this theory are carried out, and the teaching of concepts such as curved space-time, black holes, and gravitational waves are highlighted. The analysis led us to conclude that there is a preference for a qualitative treatment of the concepts of general relativity. Besides, various didactic resources are identified for its teaching in primary and secondary education. Finally, updating science curricula is emphasized by introducing general relativity to achieve holistic and contextualized learning.

Keywords


Downloads

Download data is not yet available.

References

Adams, K., Dattatri, R., Kaur, T. y Blair, D. (2021). Long-term impact of a primary school intervention on aspects of Einsteinian physics. Physics Education, 56(5), 055031.

https://doi.org/10.1088/1361-6552/ac12a9

Almeida, J. R., y Soltau, S. B. (2022). Interstellar movie and Flipped Classroom: a proposal for teach general relativity and black holes in High School. Research, Society and Development, 11(5). https://doi.org/10.33448/rsd-v11i5.28437

Alstein, P., Krijtenburg, K. y Van Joolingen, W. (2021). Teaching and learning special relativity theory in secondary and lower undergraduate education. A literature review. Physical Review Physics Education Research, 17(2), 023101. https://doi.org/10.1103/PhysRevPhysEducRes.17.023101

Andersen, W.L. (2020). Labs to Accompany Treatment of General Relativity in a General Education Astronomy Course. The Physics Teacher, 58(8), 560–563. https://doi.org/10.1119/10.0002377

Arriassecq, I., Cayul, E. y Greca, I. (2017). Enseñanza de la teoría general de la relatividad en la escuela secundaria: por qué, qué y cómo. Revista de Enseñanza de la Física, 29(2), 33–44. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/18802

Barr, I. A., Bull, A., O’Brien, E., Drillsma-Milgrom, K.A. y Milgrom, L. R. (2016). Illuminating black holes. Physics Education, 51(4), 043001–. https://doi.org/10.1088/0031-9120/51/4/043001

Belloni, M., Christian, W. y Dancy, M. (2004). Teaching special relativity using Physlets®. The Physics Teacher, 42 (5), 284-290. https://doi.org/10.1119/1.1737963

Benedetto, E. y Iovane, G. (2022). The speed of light or the speeds of light? Revista Brasileira de Ensino de Física, 44, e20210421. https://doi.org/10.1590/1806-9126-RBEF-2021-0421

Bertschinger, E. y Taylor, E. F. (2008). General relativity for sophomores. American Journal of Physics, 76(2), 103–. https://doi.org/10.1119/1.2825393

Boyle, J. (2019a). Teaching gravitational waves in the lower secondary school. Part I. A teaching module. Physics Education, 54(2), 025005. http://dx.doi.org/10.1088/1361-6552/aaf779

Boyle, J. (2019b). Teaching gravitational waves in the lower secondary school. Part II. A model for a STEM enrichment programme. Physics Education, 54(2), 025006. http://dx.doi.org/10.1088/1361-6552/aaf76e

Bozzo, G. (2020). Free-Fall Demonstrations in the High School Laboratory. The Physics Teacher, 58(1), 23–27. https://doi.org/10.1119/1.5141966

Brunner, J.L., y Abd-El-Khalick, F. (2020). Improving nature of science instruction in elementary classes with modified science trade books and educative curriculum materials. Journal of Research in Science Teaching, 57(2), 154–183. https://doi.org/10.1002/tea.21588

Burko, L. M. (2017). Gravitational Wave Detection in the Introductory Lab. The Physics Teacher, 55(5), 288–292. https://doi.org/10.48550/arXiv.1602.04666

Cardona, G., Reyes, J. y Ortiz, E. (2014). El Principio de Equivalencia: una propuesta didáctica a partir del juguete de Einstein. Latin-American Journal of Physics Education, 8(4), 1-5. https://dialnet.unirioja.es/servlet/articulo?codigo=5199778

Cayul, E., Arriassecq, I., Greca, I. M. y Givonetti, A. (2019). Análisis de la primera implementación de la propuesta didáctica “Ondas gravitacionales en contexto para la escuela secundaria: física contemporánea, divulgación científica y género”. Revista De Enseñanza De La Física, 31, 181–188. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/26544

Choudhary, R., Foppoli, A., Kaur, T., Blair, D., Zadnik, M., Zadnik, M. y Meagher, R. (2018). Can a short intervention focused on gravitational waves and quantum physics improves students' understanding and attitude? Physics Education, 53(6). https://doi.org/10.1088/1361-6552/aae26a

Choudhary, R., Kraus, U., Kersting, M., Blair, D., Zahn, C., Zadnik, M. y Meagher, R. (2019). Einsteinian Physics in the Classroom: Integrating Physical and Digital Learning Resources in the Context of an International Research Collaboration. The Physics Educator, 1(4), 1950016. https://doi.org/10.1142/S2661339519500161

Choudhary, R., Foppoli, A., Kaur, T., Blair, D., Burman, R. y Zadnik, M. (2020). A comparison of short and long Einsteinian physics intervention programmes in middle school. Research in Science Education, 52, 305-324. https://doi.org/10.1007/s11165-020-09944-8

Christensen, N. y Moore, T. (2012). Teaching general relativity to undergraduates. Physics Today, 65(6), 41-47. https://doi.org/10.1063/PT.3.1605

Da Silva, C.S., Heringer, S.C., Da Silva, A.R., Piumbini, C.K. y Buffon, L.O. (2022). Teoria da relatividade e viagem no tempo: uma abordagem usando a técnica da controvérsia controlada.Kiri-Kerê-Pesquisa em Ensino, 1(12), 220-236. https://doi.org/10.47456/krkr.v1i12.35614

Da Rosa, C., Giacomelli, A., Da Rosa, A. y Biazus, M. (2017). Relatividade no ensino médio: Análise de uma proposta didática envolvendo o uso de filmes de ficção científica. Espacios, 38(35), 22-34. http://www.revistaespacios.com/a17v38n35/17383522.html

Dua, Y., Blair, D., Kaur, T. y Choudhary, R. (2020). Can Einstein’s theory of general relativity be taught to indonesian high school students? Jurnal Pendidikan IPA Indonesia, 9(1), 50-58. https://doi.org/10.15294/jpii.v9i1.22468

Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354(7), 769–880. https://doi.org/10.1002/andp.19163540702

Ferreira, M., Lessa, R., Da Silva, O., Paulucci, L. y Ferreiro, F. (2021). Ensino de astronomia: uma abordagem didática a partir da Teoria da Relatividade Geral. Revista Brasileira de Ensino de Física, 43, e20210157. https://doi.org/10.1590/1806-9126-RBEF-2021-0157

Foppoli, A., Choudhary, R., Blair, D., Kaur, T., Moschilla, J. y Zadnik, M. (2019). Public and teacher response to Einsteinian physics in schools. Physics Education, 51(1), 015001. https://doi.org/10.1088/1361-6552/aae4a4

Ford, J., Stang, J. y Anderson, C. (2015). Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom. The Physics Teacher, 53(9), 557–560. https://doi.org/10.1119/1.4935771

García-Carmona, A., Acevedo, J., y Aragón, M. (2018). Comprensión del alumnado de secundaria sobre la dimensión sociológica de la naturaleza de la ciencia a partir de la historia de la ciencia. Ápice. Revista de Educación Científica, 2(2), 43–54. https://doi.org/10.17979/arec.2018.2.2.4519

García-Carmona, A. (2020). La primera imagen de un agujero negro en los medios: una oportunidad para reflexionar sobre aspectos de naturaleza de la ciencia. Ciências Em Foco, 13(0), 1–14. https://econtents.bc.unicamp.br/inpec/index.php/cef/article/view/13857

García-Carmona, A. (2021). Learning about the nature of science through the critical and reflective reading of news on the COVID-19 pandemic. Cultural Studies of Science Education, 16, 1015–1028. https://doi.org/10.1007/s11422-021-10092-2

Goldoni, E. y Stefanini, L. (2020). A century of light-bending measurements: bringing solar eclipses into the classroom. Physics Education, 55(4), 045009. https://doi.org/10.1088/1361-6552/ab8778

Hewitt, P. (2007). Física Conceptual. Pearson Educación.

Horvath, J. y Moraes, P. (2021). Should we teach general relativity in high school? Why and how? Astronomy Education Journal, 1(1), 49-51. https://doi.org/10.32374/AEJ.2021.1.1.008

Huwe, P. y Field, S. (2015). Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students. The Physics Teacher, 53(5), 266–270. https://doi.org/10.1119/1.4917429

Kaur, T., Blair, D., Moschilla, J., Stannard, W. y Zadnik, M. (2017a). Teaching Einsteinian physics at schools: part 1, models and analogies for relativity. Physics Education, 52(6), 065012. https://doi.org/10.1088/1361-6552/aa83e4

Kaur, T., Blair, D., Moschilla, J., Stannard, W. y Zadnik, M. (2017b). Teaching Einsteinian physics at schools: part 3, review of research outcomes. Physics Education, 52(6), 065014. https://doi.org/10.1088/1361-6552/aa83dd

Kaur, T., Blair, D., Stannard, W., Treagust, D., Venville, G., Zadnik, M., Mathews, W. y Perks, D. (2020). Determining the intelligibility of Einsteinian concepts with middle school students. Research in Science Education, 50(6), 2505–2532. https://doi.org/10.1007/s11165-018-9791-y

Kersting, M. y Steier, R. (2018). Understanding Curved Spacetime. Science & Education, 27, 593–623. https://doi.org/10.1007/s11191-018-9997-4

Kersting, M., Henriksen, E., Vetleseter, M. y Angell, C. (2018). General relativity in upper secondary school: Design and evaluation of an online learning environment using the model of educational reconstruction. Physical Review Physics Education Research, 14(1), 010130. https://doi.org/10.1103/PhysRevPhysEducRes.14.010130

Kersting, M. (2019). Navigating four dimensions – upper secondary students’ understanding of movement in spacetime. Journal of Physics: Conference Series, 1287, 012007. https://doi.org /10.1088/1742-6596/1287/1/012007

Kersting, M., Toellner, R., Blair, D. y Burman, R. (2020). Gravity and warped time—clarifying conceptual confusions in general relativity. Physics Education, 55(1), 015023. https://doi.org /10.1088/1361-6552/ab56d7

Kersting, M., Schrocker, S. y Papantoniou, S. (2021). ‘I loved exploring a new dimension of reality’ – a case study of middle-school girls encountering Einsteinian physics in the classroom. International Journal of Science Education, 43(12), 2044–2064. https://doi.org/10.1080/09500693.2021.1950943

Kersting, M. (2022). A case for conceptual approaches in general relativity education. Astronomy Education Journal, 2(1), 1–6. https://doi.org/10.32374/AEJ.2022.2.1.040op

Kontomaris, S. V. y Malamou, A. (2019). A presentation of the black hole stretching effect. Physics Education, 53(1), 015010. https://doi.org/10.1088/1361-6552/aa8d22

Kraus, U. y Zahn, C. (2019). Sector models—a toolkit for teaching general relativity: III. Spacetime geodesics. European Journal of Physics, 40(1). https://doi.org/10.1088/1361-6404/aae3b5

Majid, A. y Rohaeti, E. (2018). The Effect of Context-Based Chemistry Learning on Student Achievement and Attitude. American Journal of Educational Research, 6, 836-839. https://doi.org/10.12691/education-6-6-37

Manassero, M. A., y Vázquez, A. (2019). Conceptualización y taxonomía para estructurar los conocimientos acerca de la ciencia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(3), 3104. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i3.3104

Page, M.J., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C.D., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E., Mayo-Wilson, E., McDonald, S. y Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71). https://doi.org/10.1136/bmj.n71

Park, W., Yang, S. y Song, J. (2019). When Modern Physics Meets Nature of Science. Science & Education, 28(9), 1055-1083. https://doi.org/10.1007/s11191-019-00075-9

Pinochet, J. (2020). Hawking for beginners: a dimensional analysis activity to perform in the classroom. Physics Education, 55(4), 045018. https://doi.org/10.1088/13616552/ab8ccc

Pitts, M., Venville, G., Blair, D. y Zadnik, M. (2014). An exploratory study to investigate the impact of an Enrichment Program on aspects of Einsteinian physics on year 6 students. Research in Science Education, 44(3), 363–388. https://doi.org/10.1007/s11165-013-9386-6

Postiglione, A. y De Angelis, I.(2021a). Students' understanding of gravity using the rubber sheet analogy: an Italian experience. Physics Education, 56(2), 025020. https://doi.org/10.1088/13616552/abd1c4

Postiglione, A. y De Angelis, I.(2021b). Experience gravity in the classroom using the rubber sheet: an educational proposal from the collaboration between University and School. Physics Education, 56(2), 025019. https://doi.org/10.1088/1361-6552/abcab4

Prado, X., Dominguez-Castiñeiras, J., Area I., Paredes A. y Mira, J. (2020). Aprendizaje de la Teoría de la Relatividad Restringida de Einstein. Estado de la Cuestión. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(1), 1103. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1103

Rodrigues, J., y Bueno, S. (2022). Filme Interestelar e Sala de Aula Invertida: uma proposta para ensinar relatividade geral e buracos negros no Ensino Médio. Research, Society and Development, 11(5), e40911528437. Recuperado de https://doi.org/10.33448/rsd-v11i5.28437

Ruggiero, M., Mattiello, S. y Leone, M. (2021). Physics for the masses: teaching Einsteinian gravity in primary school. Physics Education, 56(6), 065011. https://doi.org/10.1088/1361-6552/ac1ca3

Ryston, M.(2019a). Embedding Diagrams - a Hands-on Activity for Understanding Spatial Curvature. Journal of Physics: Conference Series, 1287, 012008. https://doi.org/10.1088/1742-6596/1287/1/012008

Ryston, M.(2019b). Interactive animations as a tool in teaching general relativity to upper secondary school students. Journal of Physics: Conference Series, 1286, 012049. https://doi.org/10.1088/1742-6596/1286/1/012049

Sánchez Meca, J. (2010). Cómo realizar una revisión sistemática y un meta-análisis. Aula Abierta, 38(2), 53-64. https://reunido.uniovi.es/index.php/AA/issue/view/1037/140

Scorsetti, M., Astudillo, C. y Orlando, S. (2020). ¿Qué elementos característicos del enfoque CTS se pueden reconocer en la enseñanza de la Energía en Física? Un estudio exploratorio en escuelas de Río Cuarto. Revista De Enseñanza De La Física, 32(1), 93-105. https://revistas.unc.edu.ar/index.php/revistaEF/article/view/28937

Sherin, Z., Cheu, R., Tan, P. & Kortemeyer, G. (2016). Visualizing relativity: The OpenRelativity project. American Journal of Physics, 84(5), 369-374. https://doi.org/10.1119/1.4938057

Stannard, W. B. (2018). A new model of special relativity and the relationship between the time warps of general and special relativity. Physics Education, 53(3), 035013–. https://doi.org/10.1088/1361-6552/aaab99

Stannard, W.B., Blair, D., Zadnik, M. y Kaur, T. (2017). Why did the apple fall? A new model to explain Einstein’s gravity. European Journal of Physics, 38(1), 015603. https://doi.org/10.1088/0143-0807/38/1/015603

Velentzas., A. y Halkia, K. (2013). The Use of Thought Experiments in Teaching Physics to Upper Secondary-Level Students: Two examples from the theory of relativity. International Journal of Science Education, 35(18), 3026-3049. https://doi.org/10.1080/09500693.2012.682182

Wood, M., Smith, W. y Jackson, M. (2016). Curvature of spacetime: A simple student activity. The Physics Teacher, 54(9), 572–573. https://doi.org/10.1119/1.4967905

Zahn, C. y Kraus, U. (2014). Sector models—A toolkit for teaching general relativity: I. Curved spaces and spacetimes. European Journal of Physics, 35(6), 055020.

https://doi.org/10.1088/0143-0807/35/5/055020

Zahn, C. y Kraus, U. (2019). Sector models—a toolkit for teaching general relativity: II. Geodesics. European Journal of Physics, 40(1), 015601. https://doi.org/10.1088/1361-6404/aae3b7