Development of scientific argumentation with Universe Sandbox in the teaching of gravitation
Abstract
This research evaluates the evolution of the argumentative structure of 53 secondary school students when addressing the Universal Law of Gravitation, through a Teaching-Learning Sequence based on the 5-E instructional model and the CERR (Claim, Evidence, Reasoning, Rebuttal) framework. From a mixed-methods design compared argumentative performance across two iterations: one based on physical experimentation and another mediated by the Universe Sandbox simulation software. The results demonstrate a progression in the quality of arguments. While the experimental phase presented challenges in the formulation of scientific explanations, the integration of the software allowed students to generate virtual data to construct evidence and improve their rebuttal and reasoning capacities. It is concluded that the computer simulation facilitated the visualization of abstract phenomena, serving as an epistemic tool to refine scientific argumentative practice in the classroom.Keywords
Downloads
Supporting Agencies
How to Cite
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).

Reconocimiento-NoComercial
CC BY-NC
References
Ageitos, N., Puig, B. y Calvo Peña, X. (2017). Trabajar genética y enfermedades en secundaria integrando la modelización y la argumentación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(1), 86-97. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i1.07
Bybee, R. (2015). The BSCS 5E instructional model. Creating teachable moments. National Sci-ence Teachers Association.
Creswell, J. y Plano-Clark, V. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
De Jong, T., Linn, M. y Zacharia, Z. (2013). Physical and virtual laboratories in science and engi-neering education. Science, 340(6130), 305-308. https://doi.org/10.1126/science.1230579
Develaki, M. (2012). Integrating Scientific Methods and Knowledge into the Teaching of New-ton’s Theory of Gravitation: An Instructional Sequence for Teachers’ and Students’ Nature of Science Education. Science and Education, 21(1), 853–879. https://doi.org/10.1007/s11191-010-9243-1
Erduran, S. y Park, W. (2023). Argumentation in physics education research: Recent trends and key themes. En M. Taşar, y P. Heron (Eds.), The International Handbook of Physics Edu-cation Research: Learning Physics. AIP Publishing. https://doi.org/10.1063/9780735425477_016
Galicia, L., Balderrama, J. y Edel, R. (2017). Validez de contenido por juicio de expertos: propues-ta de una herramienta virtual. Apertura, 9(2), 42-53. http://dx.doi.org/10.32870/Ap.v9n2.993
Galili, I., Bar, V. y Brosh, Y. (2017). Teaching Weight-Gravity and Gravitation in Middle School. Testing a New Instructional Approach. Science and Education, 25(1), 977–1010. https://doi.org/10.1007/s11191-016-9865-z
Harlen, W. (Ed.). (2015). Trabajando con las grandes ideas de la educación en ciencias. INNO-VEC.
Jiménez-Aleixandre, M. (2010). 10 ideas clave: Competencias en argumentación y uso de prue-bas. Graó.
Juita, Z., Sundari, P., Sari, S. y Rahim, F. (2023). Identification of Physics Misconceptions Using Five-tier Diagnostic Test: Newton’s Law of Gravitation Context. Journal Penelitian Pen-didikan IPA, 9(8), 5954–5963. https://doi.org/10.29303/jppipa.v9i8.3147
Kavanagh, C., y Sneider, C. (2006). Learning about Gravity II. Trajectories and Orbits: A Guide for Teachers and Curriculum Developers. Astronomy Education Review, 5(2), 21-52. https://doi.org/10.3847/AER2006018
Kefalis, C., Skordoulis, C. y Drigas, A. (2025). Digital Simulations in STEM Education: Insights from Recent Empirical Studies, a Systematic Review. Encyclopedia, 5(1), 10. https://doi.org/10.3390/encyclopedia5010010
Krajcik, J. y McNeill, K. (2015). Designing and assessing scientific explanation tasks. En R. Gun-stone (Ed.). Encyclopedia of science education, pp. 285-290. https://doi.org/10.1007/978-94-007-2150-0
Liou, J. y Johnson, N. (2006). Risks in space from orbiting debris. Science, 311(5759), 340-341. https://doi.org/10.1126/science.1121337
McNeill, K. L. y Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the ef-fects of teachers' instructional practices on student learning. Journal of Research in Science Teaching, 45(1), 53–78. https://doi.org/10.1002/tea.20201
McNeill, K. y Martin, D. (2011). Claims, evidence, and reasoning. Science and Children, 48(8), 52-56.
Métioui, A. y Trudel, L. (2021). Children and Preservice Teachersʼ Misconceptions and Scientifi-cally Acceptable Conceptions about Movement, Force, and Gravity. Modern Perspectives in Language, Literature and Education, 5(1), 26-42. https://doi.org/10.9734/bpi/mplle/v5/9032D
Ministerio de Educación de Chile [MINEDUC]. (2018). Texto del estudiante: Física 2° medio. SM.
Ministerio de Educación de Chile [MINEDUC]. (2021). Ciencias Naturales Física 1° y 2° medio: Texto del estudiante. Malva.
Oliva, J. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza De Las Ciencias. Revista de investigación y experiencias didácticas, 37(2), 5–24. https://doi.org/10.5565/rev/ensciencias.2648
Osborne, J. (2010). Arguing to Learn in Science: The Role of Collaborative, Critical Discourse. Science, 328(5977), 463-466. https://doi.org/10.1126/science.1183944
Osborne, J. y Allchin, D. (2024). Science literacy in the twenty-first century: informed trust and the competent outsider. International Journal of Science Education, 46(7), 847-864. https://doi.org/10.1080/09500693.2024.2331980
Pallant, A. y Lee, H. (2015). Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models. Journal of Science Education and Technology, 24(3), 378–395. https://doi.org/10.1007/s10956-014-9499-3
Pérez, S., Ríos, C. y Castillo, J. (2020). Realidad Aumentada y simuladores: astronomía para niños y niñas de cinco años. ALTERIDAD. Revista de Educación, 15(1), 25-35. https://doi.org/10.17163/alt.v15n1.2020.02
Samosa, R. (2021). Effectiveness of claim, evidence and reasoning as an innovation to develop student’s scientific argumentative writing skills. Galaxy International Interdisciplinary Re-search Journal, 9(5), 135-150. https://doi.org/10.17605/OSF.IO/2PBWU
Teixeira, E., Freire, O. y Greca, I. (2015). La enseñanza de la gravitación universal de Newton orientada por la historia y la filosofía de la ciencia: una propuesta didáctica con un enfoque en la argumentación. Enseñanza de las Ciencias, 33(1), 205-223. https://doi.org/10.5565/rev/ensciencias.1226
Toledo, W., Sánchez, M., Árcega, A., Navarrete, A. y Samperio, G. (2020). Diseño de un entorno virtual para el aprendizaje de la Ley de Gravitación de Newton en Física básica. Pädi Bole-tín Científico de Ciencias Básicas e Ingenierías del ICBI, 7(14), 18-22. https://doi.org/10.29057/icbi.v7i14.4461
Tsai, C. (2018). The effect of online argumentation of socio-scientific issues on students' scientific competencies and sustainability attitudes. Computers & Education, 116(1), 14-27. https://doi.org/10.1016/j.compedu.2017.08.009
Viau, J. y Moro, L. (2013). El perfil epistemológico de Bachelard y los modelos didácticos: la transferencia epistemológica en alumnos de nivel medio. Cuadernos de educación, 9(9). 153-164.
Young, H. y Freedman, R. (Eds.). (2018). Física Universitaria con Física Moderna 1. Pearson.

