Scientific production on Artificial Intelligence and education: a scientometric analysis
Downloads
- PDF (Español (España)) 261
- EPUB (Español (España)) 27
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 2
DOI
https://doi.org/10.25267/Hachetetepe.2024.i28.1102Info
Abstract
A scientometric analysis of the Web Of Science database is proposed, which will allow us to know the state of the art of the artificial intelligence-education binomial. The methodology took into account five stages: collection, extraction, analysis, visualisation and interpretation. The sample consisted of all scientific productions from the first appearance of the list of terms until 2022, with a total of 979 documents. The analysis focused on chronology, chronology by type of document, geographical, editorial, institutional and linguistic production of indexes referring to articles, reviews and conference proceedings, as well as analysing compliance with various laws of scientific production: law of exponential growth (Price, 1963), law of author productivity (Lotka, 1926) and law of dispersion (Bradford, 1985).. The results show that production is in an exponential phase, that there is a high percentage of independent research lacking institutional support and that the records on the subject comply with several laws of scientific production. This will allow a first approximation for the identification of trends and subsequent decision-making based on data in order to continue or discard the opening of various theoretical and/or empirical lines of research.
Keywords
Downloads
How to Cite
License
Copyright (c) 2024 Azahara Casanova Pistón, Mónica Martínez Domínguez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have published with this journal, accept the following terms:
- They will retain their copyright and guarantee the journal the right to first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License . They may be copied, used, disseminated, transmitted and publicly displayed, provided that the authorship, url, and magazine are cited, and are not used for commercial purposes. No derivative works are allowed.
- They may adopt other non-exclusive license agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Disseminate your work through the Internet (e.g., in institutional telematic archives or on your website) once the manuscript is accepted, which may lead to interesting exchanges and increased citations of the published work. (See The effect of open access).
Hachetetepé. Scientific journal of education and communication does not charge a fee for the submission of manuscripts or for the publication of its articles.
References
Akgun, S., y Greenhow, C. (2022). Artificial Intelligence in Education: Addressing ethical challenges in K-12 settings. AI and Ethics, 2(3), 431-440. https://doi.org/10.1007/s43681-021-00096-7
Aparicio-Gómez, W. O. (2023). La Inteligencia Artificial y su Incidencia en la Educación: Transformando el Aprendizaje para el Siglo XXI. Revista Internacional de Pedagogía e Innovación Educativa, 3(2), 217-229. https://doi.org/10.51660/ripie.v3i2.133
Arencibia, R., Félix De Moya, J. I. y Ii, A. (2008). La evaluación de la investigación científica: una aproximación teórica desde la cienciometría. ACIMED, 17(4), 0-0. https://acortar.link/mTFvwb
Berland, M., Baker, R. S., y Blikstein, P. (2014). Educational Data Mining and Learning Analytics: Applications to Constructionist Research. Technology, Knowledge and Learning, 19(1), 205-220. https://doi.org/10.1007/s10758-014-9223-7
Bonami, B., Dala-Possa, A., y Piazentini, L. (2020). Educación, Big Data e Inteligencia Artificial Metodologías mixtas en plataformas digitales. Revista Comunicar, 65, 43-52.https://doi.org/10.3916/C65-2020-04
Bradford, S. C. (1985). Sources of Information on Specific Subjects. Information Science 10 (4), 173-180. https://doi.org/10.1177/016555158501000406
Calzadilla-Pérez, O. O. (2023). Mapeo cienciométrico de las Neurociencias de la Educación: miradas para la formación de docentes. Estudios Pedagógicos, 49(1), 281-303. https://doi.org/10.4067/S0718-07052023000100281
Callon, M., Courtial, J. P., y Penan, H. (1995). Scientometric. Ediciones Trea.
Cardona-Román, D. M. y Sánchez-Torres, J. M. (2017). Análisis cienciométrico de la producción científica acerca de la investigación sobre la evaluación de la implementación del e-learning en el periodo 2000-2015. Educación, 26(51). http://dx.doi.org/10.18800/educacion.201702.001
Cobos, A., Padial, J. J., y Berrocal, E. (2021). La gamificación a través de plataformas E-learning: Análisis cienciométrico de una pedagogía emergente implantada mediante de las TIC. ReiDoCrea: Revista electrónica de
investigación Docencia Creativa. 10(43)https://doi.org/10.30827/DIGIBUG.70897
Dawson, S., Joksimovic, S., Mills, C., Gašević, D., y Siemens, G. (2023). Advancing theory in the age of artificial intelligence. British Journal of Educational Technology, 54(5), 1051–1056. https://doi.org/10.1111/BJET.13343
Fernández, A., y Padial, J. J. (2018). Análisis cienciométrico de Tesis Doctorales Españolas sobre Altas Capacidades y sobredotación (1986- 2017). ReiDoCrea, 8, 292-308. http://dx.doi.org/10.30827/Digibug.57762
Fernández-Cano, A., y Fernández-Guerrero, A. (2022). Spanish educational production in the Social Sciences Citation Index (2010-2020). III. Revista Española de pedagogía, 80(282), 347-370. https://doi.org/10.22550/REP80-2-2022-08
Flores-Vivar, J. M., y García-Peñalvo, F. J. (2023). Reflexiones sobre la ética, potencialidades y retos de la Inteligencia Artificial en el marco de la Educación de Calidad (ODS4). Comunicar: Revista Científica de Comunicación y
Educación, 74, 37–47. https://doi.org/10.3916/C74-2023-03
Galdames, I. S. (2023). Inteligencia Artificial en investigación científica. SciComm Report, 3, 1–3. https://doi.org/10.32457/SCR.V3I1.2149
García-Peña, V. R., Mora-Marcillo, A. B., y Ávila-Ramírez, J. A. (2020). La Inteligencia Artificial en la educación. Dominio de Las Ciencias, 6(3), 28. https://doi.org/10.23857/dc.v6i3.1421
García-Peñalvo, F. J., Llorens-Largo, F., y Vidal, J. (2024). The new reality of education in the face of advances in generative artificial intelligence. [La nueva realidad de la educación ante los avances de la Inteligencia Artificial generativa]. Revista Iberoamericana de Educación a Distancia, 27(1).
Gingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses. Bibliometrics and Research Evaluation. https://doi.org/10.7551/MITPRESS/10719.001.0001
Gómez, C. J., López, R., y Rodríguez, J. (2019). La investigación en Didáctica de las Ciencias Sociales en revistas españolas de Ciencias de la Educación. Un análisis bibliométrico (2007-2017). Didáctica de las ciencias experimentales y sociales, 37(10), 67-87. https://acortar.link/NL1s1R
González, C. (2023). El impacto de la Inteligencia Artificial en la educación: transformación de la forma de enseñar y de aprender. Qurrículum, 36, 51-60. https://doi.org/10.25145/j.qurricul.2023.36.03
Holmes, W., Hui, Z., Miao, F., y Ronghuai, H. (2021). Inteligencia Artificial y educación. Guía para las personas a cargo de formular políticas. UNESCO Publishing.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317-323. https://acortar.link/VGBta1
Madiega, T. (2023). Artificial intelligence act. Briefing EU Legislation in Progress. https://acortar.link/IwLk2r
McCarthy, J., Minsky, M. L., Rochester, N., y Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence, https://bit.ly/3wipykL AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904
Michán, L., y Muñoz-Velasco, I. (2013). Cienciometría para ciencias médicas: definiciones, aplicaciones y perspectivas. Investigación en educación médica, 2(6), 100-106. https://acortar.link/cfi67F
Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., y Nguyen, B.P. T. (2023). Ethical principles for artificial intelligence in education. Education and Information Technologies, 28(4), 4221-4241. https://doi.org/10.1007/s10639-022-11316-w
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71), 1-9 https://doi.org/10.1136/bmj.n71
Parra-González, M. E., y Segura-Robles, A. (2019). Producción de literatura científica sobre gamificación en educación: un análisis cienciométrico. Revista de educación, 2019(386), 113-135. https://doi.org/10.4438/1988-592X-RE-2019-386-429
Parra-Sánchez, J. S. (2022). Potencialidades de la Inteligencia Artificial en Educación Superior: Un Enfoque desde la Personalización. Revista Tecnológica-Educativa Docentes 2.0, 14(1), 19-27. https://doi.org/10.37843/rted.v14i1.296
Price, D. J. S. (1963). Little science, big science-- and beyond. Columbia University Press.
Roll, I., y Wylie, R. (2016). Evolution and Revolution in Artificial Intelligence in Education. International Journal of Artificial Intelligence in Education, 26(2), 582-599. https://doi.org/10.1007/s40593-016-0110-3
So, S. A., y Ahn, S. (2022). A Study on the Artificial Intelligence Ethics Measurement indicators for the Protection of Personal Rights and Property Based on the Principles of Artificial Intelligence Ethics. Journal of Internet Computing
and Services, 23(3), 111-123. https://doi.org/10.7472/jksii.2022.23.3.111
Solís, M. E. C., Martínez, E. L., Degante, E. C., Godoy, E. P., y Martínez, Y. A. (2023). Inteligencia Artificial generativa para fortalecer la educación superior: Generative artificial intelligence to boost higher education. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 4(3), 767-784. https://doi.org/10.56712/latam.v4i3.1113
Unión Europea [UE]. (2022). Directrices éticas sobre el uso de la Inteligencia Artificial (IA) y los datos en la educación y formación para los educadores. https://doi.org/10.2766/795588
United Nations Educational, Scientific and Cultural Organization [UNESCO].(5 de octubre 2022). ¿Por qué la UNESCO considera importante la innovación digital en educación? https://acortar.link/c05aDZ
United Nations Educational, Scientific and Cultural Organization [UNESCO]. (2019). Beijing Consensus on Artificial Intelligence and Education. https://acortar.link/e5awg2