Experimentos para ilustrar la frecuencia de resonancia en una microbalanza de cristal de cuarzo con materiales de bajo costo

Descargas

Visitas a la página del resumen del artículo:  477  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i2.2201

Información

Experiencias, recursos y otros trabajos
2201
Publicado: 22-04-2024
PlumX

Autores/as

Resumen

Este estudio propone tres actividades para una práctica de laboratorio multidisciplinaria con estudiantes universitarios de ciclos avanzados, estas actividades didácticas buscan desarrollar la curiosidad científica mediante la construcción de un equipo analítico. Con este objetivo, los estudiantes ensamblan una microbalanza con frecuencímetros de bajo de costo reemplazando el osciloscopio por smartphones, contadores de frecuencia de bricolaje, y placas de desarrollo Arduino, con el fin educativo de ilustrar las propiedades piezoeléctricas del cristal de cuarzo, y su relación con la frecuencia de resonancia mediante un aprendizaje experimental.

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Agencias de apoyo  

Dirección de Investigación de la Universidad Peruana de Ciencias Aplicadas (UPC)

Citas

Arnau, A. (2008). A Review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1), 370-411. https://doi.org/10.3390/s8010370

Alassi, A., Benammar, M., Brett, D. (2017). Quartz crystal microbalance electronic interfacing systems: A review, Sensors. Sensor 17(12), 2799. https://doi.org/10.3390/s17122799

Bloom, B., Krathwohl, D. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. Nueva York, USA: Longmans, Green.

Bruckenstein, S., Shay, M. (1985). Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta 30(10), 1295-1300, https://doi.org/10.1016/0013-4686(85)85005-2

Cady, W. G. (1946). Piezoelectricity : An introduction to the theory and applications of electromechanical phenomena in crystals. McGraw-Hill, New York.

Carvajal-Ahumada, L. A., Serrano, J. J., Pazos, J. E., García, M. A., Herrera, O. L. (2017). Diseño y evaluación de un micro viscosímetro de bajo costo utilizando un resonador de cristal de cuarzo y Arduino. Orinoquia 21(1), 45-55, https://doi.org/10.22579/20112629.430

Flores-Flores, E., Flores-Mena, J. E., Castillo, M. M. M., Arias, E. M. G., Mendoza-Álvarez, M. E., Alcántara-Iniesta, S. (2010). Construcción y caracterización eléctrica de una microbalanza con Bi4Ti3O1. Superficies y vacío 23(S), 153-160, https://www.redalyc.org/articulo.oa?id=94248264031

Jayasvasti, S., Isarakorn, D., Nundrakwang, S. (2017). Comparative study of QCM analyzers based on pierce oscillator and electromechanical impedance techniques. IEEE Conferences, 1, https://ieeexplore.ieee.org/document/7859608

Julian, T., Hidayat, N., Rianjanu, A., Dharmawan, A. B., Wasisto, H. S., Triyana, K. (2020). Intelligent mobile electronic nose system comprising a hybrid polymer-functionalized quartz crystal microbalance sensor array. ACS Omega 5(45), 29492-29503, https://doi.org/10.1021/acsomega.0c04433

Kamel, M. M., El-Nimr, M. K., Assar, S. T., Atlam, A. S. (2013). Design of a simple low-cost quartz crystal microbalance system. Instrumentation Science & Technology 41(5), 473-489, https://doi.org/10.1080/10739149.2013.792096

Kanazawa, K. K., Gordon II, J. G. (1985). The oscillation frequency of a quartz resonator in contact with liquid. Analytica Chimica Acta 175, 99-105, https://doi.org/10.1016/S0003-2670(00)82721-X

Li, F., Bao, Y., Wang, D., Wang, W., Niu, L. (2016). Smartphones for sensing. Science Bulletin 61(3), 190-201, https://doi.org/10.1007/s11434-015-0954-1

Meissner, D., Sarpong, D., Ofosu, G., Botchie, D. (2021). The rise of do-it-yourself (DiY) laboratories: Implications for science, technology, and innovation (STI) policy. Technological Forecasting and Social Change 165, https://doi.org/10.1016/j.techfore.2021.120589

Mista, C., Zalazar, M., Pealva, A., Martina, M., Reta, J. M. (2016). Open source quartz crystal microbalance with dissipation monitoring. Journal of Physics: Conference Series 705, https://doi.org/10.1088/1742-6596/705/1/012008

Nomura, T., Okuhara, M. (1982). Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Analytica Chimica Acta 142, 281-284, https://doi.org/10.1016/S0003-2670(01)95290-0

Rodahl, M., Höök, F., Krozer, A., Brzezinski, P., Kasemo, B. (1995). Quartz crystal microbalance setup for frequency and Q‐factor measurements in gaseous and liquid environments, Review of Scientific Instruments 66, 3924, https://doi.org/10.1063/1.1145396

Scheeline, A. (2010). Teaching, learning, and using spectroscopy with commercial, off the shelf technology. Applied Spectroscopy 64(9), 256A-268A. https://doi.org/10.1366/000370210792434378

Sauerbrey, G. (1959). Uso de cristales oscilantes para pesaje de capas delgadas y para micropesaje. Zeitschrift für Physik 155, 206-222. https://doi.org/10.1007/BF01337937

Tomas-Serrano, A. (2021). Un experimento para ilustrar el primer principio de la termodinámica en bachillerato: creación de una nube de alcohol dentro de una botella. Revista Eureka sobre Enseñanza y Divulgación de las

Ciencias 18(3), 3401, https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i3.3401

Wei, D. (2016). Tesis Master: Low-cost quartz crystal microbalance system platform designed for chemical nanoparticle, Kentucky, Western Kentucky University. https://digitalcommons.wku.edu/theses/1635/