Integrating disciplinary and didactic knowledge in chemistry teacher education: a co-teaching proposal based on authentic cases

Info

Science Teacher Education
1601
Published: 30-01-2026

Authors

Abstract

This article systematizes a instructional proposal aimed at developing pedagogical content knowledge in the initial education of chemistry teachers, implemented over a decade in a Chilean university. The proposal is organized around two articulated pillars: co-teaching between disciplinary and didactic specialists, and the analysis of authentic teaching cases with a high disciplinary component. Through iterative instructional cycles, future teachers interpret student thinking, define learning goals and design situated didactic interventions, critically integrating disciplinary, curricular, didactic and pedagogical knowledge for responsive teaching. The authentic cases act as situated reflection devices, linking the analysis of disciplinary content with informed pedagogical decision-making. The results show transformations in the way prospective teachers articulate theory and practice, and in their ability to think about teaching from a professionalized perspective. The contributions and challenges of the proposal are discussed, highlighting its potential to strengthen the initial education of science teachers through the deliberate integration of disciplinary and didactic knowledge.

Keywords


Downloads

Download data is not yet available.

How to Cite

Marzábal Blancafort, A., & Delgado Chang, V. (2026). Integrating disciplinary and didactic knowledge in chemistry teacher education: a co-teaching proposal based on authentic cases. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 23(1), 1601. Retrieved from https://revistas.uca.es/index.php/eureka/article/view/11856

Author Biography

Ainoa Marzábal Blancafort, Pontificia Universidad Católica de Chile

Ainoa Marzábal Blancafort has a PhD in Science Education from the Universidad Autónoma de Barcelona and a degree in Chemistry from the Faculty of Sciences of the same university. Her area of interest focuses on science learning from the perspective of school science models and modelling, and the initial science teacher education. Currently, she is an academic at the UC Faculty of Education.

References

Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405–1416. https://doi.org/10.1080/09500690802187041

Bacharach, N., Heck, T. y Dahlberg, K. (2010). Changing the face of student teaching through co-teaching. Action in Teacher Education, 32(1), 3–14. https://doi.org/10.1080/01626620.2010.10463538

Baeten, M. y Simons, M. (2014). Student teachers’ team teaching: Models, effects, and conditions for implementation. Teaching and Teacher Education, 41, 92–110. https://doi.org/10.1016/j.tate.2014.03.010

Behling, F., Förtsch, C. y Neuhaus, B. J. (2022). The refined consensus model of pedagogical content knowledge (PCK): Detecting filters between the realms of PCK. Education Sciences, 12(9), Article 592. https://doi.org/10.3390/educsci12090592

Berry, A., Friedrichsen, P. y Loughran, J. (Eds.). (2015). Re-examining pedagogical content knowledge in science education. Routledge.

Carlson, J., Daehler, K. R., Alonzo, A. C., Barendsen, E., Berry, A., Borowski, A., Carpendale, J., Kam, K., Cooper, R., Friedrichsen, P., Gess-Newsome, J., Henze-Roetvelt, I., Hume, A., Kirschner, S., Liepertz, S., Loughran, J., Mavhunga, E., Neumann, K., Nilsson, P., Park, S., Rollnick, M., Sickel, A., Schneider, R., Kjung, J., Van Driel, J. y Wilson, C. D. (2019). The refined consensus model of pedagogical content knowledge in science education. En A. Berry, P. Friedrichsen y J. Loughran (Eds.), Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 77–94). Springer. https://doi.org/10.1007/978-981-13-5898-2_5

Darling-Hammond, L. y Snyder, J. (2000). Authentic assessment of teaching in context. Teaching and Teacher Education, 16(5–6), 523–545. https://doi.org/10.1016/S0742-051X(00)00015-9

DeCoito, I. y Fazio, X. (2016). Developing case studies in teacher education: Spotlighting socioscientific issues. Innovations in Science Teacher Education, 2(1).

Delgado, V., Marzabal, A. y Moreno, J. (2023). Las ideas alternativas de los estudiantes sobre la cinética de las reacciones químicas. Alambique: Didáctica de las Ciencias Experimentales, (111), 26–31.

Dubek, M. y Doyle-Jones, C. (2021). Faculty co-teaching with their teacher candidates in the field: Co-planning, co-instructing, and co-reflecting for STEM education teacher preparation. The Teacher Educator, 56(4), 445–465. https://doi.org/10.1080/08878730.2021.1909652

Ferrés, C., Marbà, A. y Sanmartí, N. (2015). Trabajos de indagación de los alumnos: Instrumentos de evaluación e identificación de dificultades. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 22–37.

Friedrichsen, P., Van Driel, J. H. y Abell, S. K. (2009). Taking a closer look at science teaching orientations. Science Education, 93(4), 358–376. https://doi.org/10.1002/sce.20303

Friend, M. y Cook, L. (2010). Interactions: Collaboration skills for school professionals. Pearson.

Günther, S. L., Fleige, J., zu Belzen, A. U. y Krüger, D. (2019). Using the case method to foster preservice biology teachers’ content knowledge and pedagogical content knowledge related to models and modeling. Journal of Science Teacher Education, 30(4), 321–343. https://doi.org/10.1080/1046560X.2018.1560208

Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. En A. Berry, P. Friedrichsen y J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28–42). Routledge.

Justi, R. y Van Driel, J. (2005). A case study of the development of a beginning chemistry teacher’s knowledge about models and modelling. Research in Science Education, 35, 197–219. https://doi.org/10.1007/s11165-004-7583-z

Kind, V. (2009). Pedagogical content knowledge in science education: Perspectives and potential for progress. Studies in Science Education, 45(2), 169–204. https://doi.org/10.1080/03057260903142285

Kind, V. y Chan, K. K. (2019). Resolving the amalgam: Connecting pedagogical content knowledge, content knowledge and pedagogical knowledge. International Journal of Science Education, 41(7), 964–978. https://doi.org/10.1080/09500693.2019.1584931

Levin, D., Hammer, D. y Coffey, J. E. (2009). Novice teachers’ attention to student thinking. Journal of Teacher Education, 60(2), 142–154. https://doi.org/10.1177/0022487108330245

Loughran, J. (2019). Pedagogical reasoning: The foundation of the professional knowledge of teaching. Teachers and Teaching, 25(5), 523–535. https://doi.org/10.1080/13540602.2019.1633294

Magnusson, S., Krajcik, J. y Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge. En J. Gess-Newsome y N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Springer.

Marzabal, A., Moreira, P., Delgado, V., Moreno, J. y Contreras, R. (2016). Hacia la integración del conocimiento disciplinar y pedagógico: Desarrollando el conocimiento pedagógico del contenido en la formación inicial de profesores de química. Estudios Pedagógicos (Valdivia), 42(4), 243–260.

Murphy, C. y Martin, S. N. (2015). Coteaching in teacher education: Research and practice. Asia-Pacific Journal of Teacher Education, 43(4), 277–280. https://doi.org/10.1080/1359866X.2015.1066807

Park, S. y Chen, Y. C. (2012). Mapping out the integration of the components of PCK: Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922–941. https://doi.org/10.1002/tea.21022

Park, S. y Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284. https://doi.org/10.1007/s11165-007-9049-6

Richards, J. y Robertson, A. D. (2015). A review of the research on responsive teaching in science and mathematics. Taylor & Francis.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004

Traiman-Schroh, N., Raviolo, A. y Farré, A. (2022). Dificultades en el aprendizaje del concepto concentración: Una metasíntesis. Educación Química, 33(3), 127–138. https://doi.org/10.22201/fq.18708404e.2022.3.81066

Van Driel, J. H., Hume, A. y Berry, A. (2023). Research on science teacher knowledge and its development. En Handbook of research on science education (pp. 1123–1161). Routledge.

Vázquez-Bernal, B., Mellado, V. y Jiménez-Pérez, R. (2022). The long road to shared PCK: A science teacher’s personal journey. Research in Science Education, 52(6), 1807–1828. https://doi.org/10.1007/s11165-021-10005-1

Weinberg, A. E., Sebald, A., Stevenson, C. A. y Wakefield, W. (2020). Toward conceptual clarity: A scoping review of coteaching in teacher education. The Teacher Educator, 55(2), 190–213. https://doi.org/10.1080/08878730.2019.1657214

Yee, S. F. (2019). A phenomenological inquiry into science teachers’ case method learning. Springer.