The relationship among beliefs about problem solving, epistemological beliefs, grade level, sex, and problem solving achievement: A study in secondary school
Downloads
- PDF (Español (España)) 1067
- EPUB (Español (España)) 71
- VISOR (Español (España))
- MÓVIL (Español (España))
- Anexo I (Español (España)) 566
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1102Info
Abstract
The first purpuse of this investigation was to study the effects of gender and grade level on secondary students’ beliefs about epistemology and problem solving. The second purpuse was to analyze the contribution of both belief systems, grade level, and gender to problem solving achievement. One hundred and forty-four High School students, 9th and 11th grade students, took part in the study. Two questionnaires (Schommer and Stage- Kloosterman’s questionnaires) and a problem solving test (two word problems of the PISA tests) were administered to these students. Two ANOVAs, an ANCOVA, and a multiple regression analysis were carried out from data obtained in the investigation. In the light of the foregoing, it can be concluded that: a) The higher is the grade level of secondary students, the more appropriate are beliefs about epistemology and problem solving; b) Students’ gender has a significant influence on epistemological beliefs, but not on beliefs about problem solving; and c) Students’ problem solving achievement depends on grade level and their beliefs about problem solving, and these beliefs are themselves dependent on students’ epistemological beliefs.
Keywords
Downloads
License
Copyright (c) 2020 Javier Alabau Gonzalvo, Joan Josep Solaz-Portolés, Vicente Sanjosé López
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).
Reconocimiento-NoComercial
CC BY-NC
References
Araña-Sangcap, P. G. (2010). Mathematics-related beliefs of Filipino college students: Factors affecting mathematics and problem solving performance. Procedia-Social and Behavioral Sciences, 8, 465-475.
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for Research in Mathematics Education, 21(1) 47-60.
Bodin, M., y Winberg, M. (2012). Role of beliefs and emotions in numerical problem solving in university physics education. Physical Review Special Topics-Physics Education Research, 8(1), 010108. https://journals.aps.org/prper/pdf/10.1103/PhysRevSTPER.8.010108
Bråten, I., y Strømsø, H. I. (2005). The relationship between epistemological beliefs, implicit theories of intelligence, and self‐regulated learning among Norwegian postsecondary students. British Journal of Educational Psychology, 75(4), 539-565.
Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203-221.
Castro, E. (2008). Resolución de Problemas. ideas, tendencias e influencias en España. En R. Luengo, B. Gómez, M. Camacho, y L. J. Blanco (Eds.), Investigación en Educación Matemática XII (pp. 113-140). Badajoz: SEIEM
Conley, A. M., Pintrich, P. R., Vekiri, I., y Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186-204.
DeBacker, T. K., Crowson, H. M., Beesley, A. D., Thoma, S. J., y Hestevold, N. L. (2008). The challenge of measuring epistemic beliefs: An analysis of three self-report instruments. The Journal of Experimental Education, 76(3), 281-312.
Docktor, J. y Heller, K. (2008). Gender differences in both force concept inventory and introductory physics performance. En C. Henderson, M. Sabella, y L. Hsu, Physics Education Research Conference 2008 (pp. 15-18). Melville, NY: American Institute of Physics.
Douglas, E. P., Koro-Ljungberg, M., McNeill, N. J., Malcolm, Z. T., y Therriault, D. J. (2012). Moving beyond formulas and fixations: Solving open-ended engineering problems. European Journal of Engineering Education, 37(6), 627–651. http://dx.doi.org/10.1080/03043797.2012.738358
Duell, O. K., y Schommer-Aikins, M. (2001). Measures of people's beliefs about knowledge and learning. Educational Psychology Review, 13, 419-449.
Gallagher, A. M., De Lisi, R., Holst, P. C., McGillicuddy-De Lisi, A. V., Morely, M., y Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75(3), 165-190.
García Gallego, P., Sanjosé López, V., y Solaz-portolés, J. J. (2015). Efectos de las características del problema, captación de su estructura y uso de analogías sobre el éxito de los estudiantes de secundaria en la resolución de problemas. Teoría de la Educación. Revista Interuniversitaria, 27(2), 221-244.
Gómez-Ferragud, C., Solaz-Portolés, J. J., y Sanjosé, V. (2015). Effects of topic familiarity on analogical transfer in problem-solving: A think-aloud study of two singular cases. Eurasia Journal of Mathematics, Science y Technology Education, 11(4), 875-887.
Guirado, A. M., Mazzitelli, C., y Maturano, C. (2013). La resolución de problemas en la formación del profesorado en ciencias: análisis de las opiniones y estrategias de los estudiantes. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10 (Núm. Extraordinario), 821-835. doi: http://dx.doi.org/10.25267/Rev_Eureka_ensen_ divulg_cienc.2013.v10.iextra.22
Guven, B., y Cabakcor, B. O. (2013). Factors influencing mathematical problem-solving achievement of seventh grade Turkish students. Learning and Individual Differences, 23, 131-137.
Hofer, B. K. (2002). Personal epistemology as a psychological and educational construct: An introduction. En B. K.
Hofer y P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 3-14). Mahwah, NJ: Lawrence Erlbaum.
Hofer, B. K., y Bendixen, L. D. (2012). Personal epistemology: Theory, research, and future directions. En K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, y J. Sweller (Eds.), APA Educational Psychology Handbook, Vol. 1. Theories, constructs, and critical issues (pp. 227-256). Washington, DC, US: American Psychological Association. http://dx.doi.org/10.1037/13273-009
Hofer, B. K., y Yu, S. L. (2003). Teaching self-regulated learning through a" Learning to Learn" course. Teaching of Psychology, 30(1), 30-33.
Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., y Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494-495.
Hyde, J. S., y Mertz, J. E. (2009). Gender, culture, and mathematics performance. Proceedings of the National Academy of Sciences, 106(22), 8801-8807.
INECSE (2005). Pisa 2003. Pruebas de matemáticas y de solución de problemas. Madrid: MEC. Extraído de: http://educalab.es/inee/evaluaciones-internacionales/preguntas-liberadas-pisa-piaac/enlaces
Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63-85.
King, P. M., y Kitchener, K. S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco, CA: Jossey-Bass.
Lindberg, S. M., Hyde, J. S., Petersen, J. L., y Linn, M. C. (2010). New trends in gender and mathematics performance: a meta-analysis. Psychological Bulletin, 136(6), 1123.
Martínez-Aznar, M., Rodríguez-Arteche, I., y Gómez-Lesarri, P. (2017). La resolución de problemas profesionales como referente para la formación inicial del profesorado de física y química. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14(1), 162-180. doi: http://dx.doi.org/10.25267/Rev_Eureka_ ensen_divulg_cienc.2017.v14.i1.13
Mason, L. (2003). High school students' beliefs about maths, mathematical problem solving, and their achievement in maths: A cross-sectional study. Educational Psychology, 23(1), 73-85.
McNeill, N. J., Douglas, E. P., Koro‐Ljungberg, M., Therriault, D. J., y Krause, I. (2016). Undergraduate students' beliefs about engineering problem solving. Journal of Engineering Education, 105(4), 560-584.
Mugarra Soldevila, I., Solaz-Portolés, J. J., y Caurín Alonso, C. (2014). Efectos en estudiantes de secundaria de la utilización de símbolos que señalizan la dificultad de los problemas. REICE. Revista Electrónica Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 12(3), 93-108.
Ozturk, T., y Guven, B. (2016). Evaluating Students' Beliefs in Problem Solving Process: A Case Study. Eurasia Journal of Mathematics, Science & Technology Education, 12(3), 411-429.
Pajares, F., y Kranzler, J. (1995). Self-efficacy beliefs and general mental ability in mathematical problem-solving. Contemporary Educational Psychology, 20(4), 426-443.
Perales, F. J. (2006). La resolución de problemas en física. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 3(3), 524-525. Extraído de: https://reuredc.uca.es/index.php/eureka/article/view/3857/3435
Phan, H. (2008). Multiple regression analysis of epistemological beliefs, learning approaches, and selfregulated learning. Electronic Journal of Research in Educational Psychology, 6 (1), 157-184.
Pintrich, P. R. (2002). Future challenges and directions for theory and research on personal epistemology. In B. K. Hofer y P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 389-414). Mahwah,NJ: Erlbaum
Pulmones, R. (2010). Linking students ’epistemological beliefs with their metacognition in a chemistry classroom . The Asia-Pacific Education Researcher, 19(1) , 143 – 159
Qian, G., y Alvermann, D. (1995). Role of epistemological beliefs and learned helplessness in secondary school students' learning science concepts from text. Journal of Educational Psychology, 87(2), 282.
Schoenfeld, A.H. (1983). Beyond the purely cognitive: Beliefs system, social cognition, and metacognition as driving forces in intellectual performance. Cognitive Science, 7, 329–363
Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82(3), 498-504.
Schommer. M. (1993). Epistemological development and academic performance among secondary students. Journal of Educational Psychology, 85(3), 406-411.
Schommer. M. ( 1994). An emerging conceptualization of epistemological beliefs and their role in learning. En R. Gamer y P. Alexander (Eds.), Beliefs about text and about text instruction (pp. 25-39). Hillsdale. NJ: Erlhaum.
Schommer, M. (1998). The influence of age and education on epistemological beliefs. British Journal of Educational Psychology, 68(4), 551-562.
Schommer, M., Calvert, C., Gariglietti, G., y Bajaj, A. (1997). The development of epistemological beliefs among secondary students: A longitudinal study. Journal of Educational Psychology, 89(1), 37-40.
Schommer-Aikins, M., Duell, O. K., y Hutter, R. (2005). Epistemological beliefs, mathematical problem-solving beliefs, and academic performance of middle school students. The Elementary School Journal, 105(3), 289-304.
Schraw, G., Dunkle, M. E., y Bendixen, L. D. (1995). Cognitive processes in well‐defined and ill‐defined problem solving. Applied Cognitive Psychology, 9(6), 523-538.
Sperling, R. A., Howard, B. C., Miller, L. A., y Murphy, C. (2002). Measures of children’s knowledge and regulation of cognition. Contemporary Educational Psychology, 27(1), 51-79.
Stage, F. K., y Kloosterman, P. (1992). Measuring beliefs about mathematical problem solving. School Science and Mathematics, 92(3), 109-115.
Stathopoulou, C., y Vosniadou, S. (2007a). Conceptual change in physics and physics-related epistemological beliefs: A relationship under scrutiny. En S. Vosniadou, A. Baltas, y X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 145-164). Oxford, UK: Elsevier.
Stathopoulou, C., y Vosniadou, S. (2007b). Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 32(3), 255-281.
Taylor, K. L., y Dionne, J. P. (2000). Accessing problem-solving strategy knowledge: The complementary use of concurrent verbal protocols and retrospective debriefing. Journal of Educational Psychology, 92(3), 413–425.
Topçu, M. S., y Yılmaz-Tüzün, Ö. (2009). Elementary students' metacognition and epistemological beliefs considering science achievement, gender and socioeconomic status. Elementary Education Online, 8(3), 676-693.
Veenman, M. V., y Spaans, M. A. (2005). Relation between intellectual and metacognitive skills: Age and task differences. Learning and Individual Differences, 15(2), 159-176.
Villagrán, M. A., Guzmán, J. I. N., Pavón, J. M. L., y Cuevas, C. A. (2002). Pensamiento formal y resolución de problemas matemáticos. Psicothema, 14(2), 382-386.
Zhu, Z. (2007). Gender differences in mathematical problem solving patterns: A review of literature. International Education Journal, 8(2), 187-203.