Scientific Model of Plant Nutrition: epistemological analysis and a proposed learning progression

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i3.3102

Info

Fundamentals and current research lines
3102
Published: 20-07-2023
PlumX

Authors

Abstract

La enseñanza/aprendizaje del Modelo Científico de la Nutrición Vegetal (MCNV) es un tema fundamental en la enseñanza de las ciencias. Sin embargo, se trata de uno de los contenidos más difíciles tanto de enseñar como de aprender. Con el objetivo de guiar al profesorado en el diseño de secuencias de enseñanza/aprendizaje y en la construcción de ambientes de aprendizaje efectivos, este estudio consta de tres secciones. En la primera se realiza un análisis epistemológico del MCNV para definir las ideas clave que han de ser trabajadas durante el recorrido académico. En la segunda se define el modelo escolar que debería alcanzar el alumnado al finalizar la educación secundaria tomando como base la investigación didáctica y el análisis del contexto y del currículum. En la última sección se configura una propuesta de progresión de aprendizaje que explicita una secuenciación del contenido del modelo tomando en consideración las dificultades de enseñanza/aprendizaje de la temática, propuestas de progresión previas, así como orientaciones curriculares internacionales.

Palabras clave: Modelos; Nutrición vegetal; Ideas clave; Progresión de aprendizaje.

Scientific Model of Plant Nutrition: epistemological analysis and a proposed learning progression

Abstract: The teaching and learning of the Scientific Model of Plant Nutrition (SMPN) is a pivotal topic in science education. However, it is also one of the most difficult contents to both teach and learn. With the aim of guiding teachers in the design of teaching/learning sequences and the construction of effective learning environments, this study consists of three sections. First, an epistemological analysis of the SMPN is performed in order to define the key ideas that must be worked on during schooling. In the second, considering the didactic research and the analysis of the context and school curriculum, it is defined the school science model students should construct by the end of secondary education. In the last section a proposed learning progression which describes a hypothetical sequencing of the contents of the model is articulated by taking into account the teaching/learning difficulties of the topic, previously proposed learning progressions, and international curricular orientations.

Keywords: Models; Plant nutrition; Key ideas, Learning progression.

Keywords


Downloads

Download data is not yet available.

References

Acevedo-Díaz, J. A., García-Carmona, A., Aragón-Méndez, M. del M., y Oliva-Martínez, J. M. (2017). Modelos científicos: Significado y papel en la práctica científica. Revista científica, 3(30), 155. https://doi.org/10.14483/23448350.12288

Adúriz-Bravo, A. (2012). Algunas características clave de los modelos científicos relevantes para la educación química. Educación Química, 23, 248-256. https://doi.org/10.1016/S0187-893X(17)30151-9

Akçay, S. (2017). Prospective elementary science teachers’ understanding of photosynthesis and cellular respiration in the context of multiple biological levels as nested systems. Journal of Biological Education, 51(1), 52-65. https://doi.org/10.1080/00219266.2016.1170067

Alonzo, A. C., Benus, M., Bennett, W., y Pinney, B. (2009). A learning progression for elementary school students’ understanding of plant nutrition. 323-332.

American Association for the Advancement of Science (AAAS) (Ed.). (2001). Atlas of science literacy. American Association for the Advancement of Science: National Science Teachers Association.

Angosto Sánchez, I., y Morcillo Ortega, J. G. (2020). Teaching vegetable nutrition: From the problem to the proposal. Journal of Biological Education, 1-15. https://doi.org/10.1080/00219266.2020.1808514

Arnon, D. I. (1982). Sunlight, Earth, Life: The grand design of photosynthesis. The Sciences, 22(7), 22-27. https://doi.org/10.1002/j.2326-1951.1982.tb02101.x

BOPV. (2015, diciembre 22). Por el que se establece el currículo de Educación Básica y se implanta en la Comunidad Autónoma del País Vasco. Decreto 236/2015.

BOPV. (2016, septiembre 6). Por el que se establece el currículo del Bachillerato y se implanta en la Comunidad Autónoma del País Vasco. Decreto 127/2016.

Brown, M. H., y Schwartz, R. S. (2009). Connecting photosynthesis and cellular respiration: Preservice teachers’ conceptions. Journal of Research in Science Teaching, 46(7), 791-812. https://doi.org/10.1002/tea.20287

Bryce, C. M., Baliga, V. B., De Nesnera, K. L., Fiack, D., Goetz, K., Tarjan, L. M., Wade, C. E., Yovovich, V., Baumgart, S., Bard, D. G., Ash, D., Parker, I. M., y Gilbert, G. S. (2016). Exploring models in the biology classroom. The American Biology Teacher, 78(1), 35-42. https://doi.org/10.1525/abt.2016.78.1.35

Campbell, T., Schwarz, C., y Windschitl, M. (2016). What we call misconceptions may be necessary stepping-stones toward making sense of the world. Science and Children, 53(7). https://doi.org/10.2505/4/sc16_053_07_28

Cañal, P. (1990). La enseñanza en el campo conceptual de la nutrición de las plantas verdes: Un estudio didáctico en la Educación Básica. Universidad de Sevilla.

Cañal, P. (2005). La nutrición de las plantas: Enseñanza y aprendizaje. Síntesis.

Charrier Melillán, M., Cañal, P., y Rodrigo Vega, M. (2007). Student’s alternative conceptions on photosynthesis and respiration: A bibliographical revision in relation to plant nutrition researches and learning. Enseñanza de las Ciencias, 24(3), 401-409. https://doi.org/10.5565/rev/ensciencias.3790

Crowe, A., Dirks, C., y Wenderoth, M. P. (2008). Biology in Bloom: Implementing Bloom’s taxonomy to enhance student learning in Biology. CBE—Life Sciences Education, 7, 368-381 https://doi.org/10.1187/cbe.08-05-0024

Dauer, J. M., Doherty, J. H., Freed, A. L., y Anderson, C. W. (2014). Connections between student explanations and arguments from evidence about plant growth. CBE—Life Sciences Education, 13(3), 397-409. https://doi.org/10.1187/cbe.14-02-0028

Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., y Parchmann, I. (2012). The model of educational reconstruction – a framework for improving teaching and learning science. En D. Jorde y J. Dillon (Eds.), Science Education Research and Practice in Europe (pp. 13-37). SensePublishers. https://doi.org/10.1007/978-94-6091-900-8_2

Duncan, R. G., y Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606-609. https://doi.org/10.1002/tea.20316

Duschl, R., Maeng, S., y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476

Galagovsky, L. R., y Adúriz-Bravo, A. (2001). Modelos y analogías en la enseñanza de las ciencias naturales. El concepto de modelo didáctico analógico. Enseñanza de las Ciencias, 19(2), 231-242. https://doi.org/10.5565/rev/ensciencias.4000

Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742-752. https://doi.org/10.1086/425063

Gilbert, J. K. (1998). Explaining with models. En ASE guide to secondary science education (M.

Ratcliffe, pp. 159-166). Stanley Thornes.

Gilbert, J. K., y Boulter, C. J. (Eds.). (2000). Developing models in science education. Springer Netherlands. https://doi.org/10.1007/978-94-010-0876-1

Gilbert, J. K., y Justi, R. (2016). Modelling-based teaching in science education (Vol. 9). Springer International Publishing. https://doi.org/10.1007/978-3-319-29039-3

González Rodríguez, C. (2009). Problemática de la nutrición vegetal en la educación obligatoria. Una propuesta de secuencia. Revista de Educación en Biología, 12(2), 36-43.

González Rodríguez, C. (2018). ¿Han mejorado las ciencias de la naturaleza en los currículos de la E.S.O. desde L.O.G.S.E hasta la L.O.M.C.E: la nutrición vegetal? En C. Martínez Losada y S. García

Barros (Eds.), 28 Encuentros de didáctica de las ciencias experimentales: Iluminando el cambio educativo (pp. 697-702). Universidade da Coruña.

González Rodríguez, C., García Barros, S., y Martínez Losada, C. (2012). La nutrición vegetal desde el pensamiento docente. Revista Eureka sobre enseñanza y divulgación de las ciencias., 9(1), 93-105. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2012.v9.i1.07

González Rodríguez, C., Martínez Losada, C., y García Barros, S. (2014). El modelo de nutrición vegetal a través de la historia. Revista Eureka sobre enseñanza y divulgación de las ciencias, 11(1), 2-12. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2014.v11.i1.02

González-Rodríguez, C., García-Barrios, S., y Martínez-Lozada, C. (2009). Plant nutrition in Spanish secondary textbooks. Journal of Biological Education, 43(4), 152-158. https://doi.org/10.1080/00219266.2009.9656175

Gotwals, A. W., y Songer, N. B. (2009). Reasoning up and down a food chain: Using an assessment framework to investigate students’ middle knowledge. Science Education, 259-281. https://doi.org/10.1002/sce.20368

Greca, I. M., y Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. https://doi.org/10.1080/095006900289976

Guisasola, J., Ametller, J., y Zuza, K. (2021). Investigación basada en el diseño de Secuencias de Enseñanza-Aprendizaje: Una línea de investigación emergente en Enseñanza de las Ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 18(1), 1-18. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1801

Guisasola, J., Montero, A., y Fernández, M. (2008). La historia del concepto de fuerza electromotriz en circuitos eléctricos y la elección de indicadores de aprendizaje comprensivo. Revista Brasileira de Ensino de Física, 30(1), 1604.1-1604.8. https://doi.org/10.1590/S1806-11172008000100018

Guisasola, J., Zuza, K., Ametller, J., y Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139. https://doi.org/10.1103/PhysRevPhysEducRes.13.020139

Harlen, W. (2015). Principles and big ideas of science education. Association for science education.

Hartley, L. M., Wilke, B. J., Schramm, J. W., D’Avanzo, C., y Anderson, C. W. (2011). College students’ understanding of the carbon cycle: Contrasting principle-based and informal reasoning. BioScience, 61(1), 65-75. https://doi.org/10.1525/bio.2011.61.1.12

Jin, H., Mikeska, J. N., Hokayem, H., y Mavronikolas, E. (2019). Toward coherence in curriculum, instruction, and assessment: A review of learning progression literature. Science Education, 103(5), 1206-1234. https://doi.org/10.1002/sce.21525

Jin, H., Zhan, L., y Anderson, C. W. (2013). Developing a fine-grained learning progression framework for carbon-transforming processes. International Journal of Science Education, 35(10), 1663-1697. https://doi.org/10.1080/09500693.2013.782453

Justi, R. (2007). La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las Ciencias, 24(2), 173-184. https://doi.org/10.5565/rev/ensciencias.3798

Kuhn, T. S. (1984). La estructura de las revoluciones científicas. Fondo de Cultura Económica.

Lambers, H., Chapin, F. S., y Pons, T. L. (2008). Plant physiological ecology. Springer New York. https://doi.org/10.1007/978-0-387-78341-3

Lewis, J. (2009). Can theoretical constructs in science be generalised across disciplines?: Eduactional Research. Journal of Biological Education, 44(1), 5-11. https://doi.org/10.1080/00219266.2009.9656185

Lin, C., y Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529-1544. https://doi.org/10.1080/0950069032000052045

Matthews, M. R. (2004). Thomas Kuhn’s impact on science education: What lessons can be learned? Science Education, 88(1), 90-118. https://doi.org/10.1002/sce.10111

Meidner, H. (1985). Historical Sketches 11. Journal of Experimental Botany, 36(11), 1831-1832. https://doi.org/10.1093/jxb/36.11.1831

Métioui, A., Matoussi, F., y Trudel, L. (2016). The teaching of photosynthesis in secondary school: A history of the science approach. Journal of Biological Education, 50(3), 275-289. https://doi.org/10.1080/00219266.2015.1085427

Mohan, L., Chen, J., y Anderson, C. W. (2009). Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 46(6), 675-698. https://doi.org/10.1002/tea.20314

Morrison, M., y Morgan, M. S. (1999). Models as mediating instruments. En M. S. Morgan y M. Morrison (Eds.), Models as mediators (1.a ed., pp. 10-37). Cambridge University Press. https://doi.org/10.1017/CBO9780511660108.003

Oh, P. S., y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191

Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648

Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196. https://doi.org/10.1007/s10972-014-9384-1

Parker, J. M., Anderson, C. W., Heidemann, M., Merrill, J., Merritt, B., Richmond, G., y Urban-Lurain, M. (2012). Exploring undergraduates’ understanding of photosynthesis using diagnostic question clusters. CBE—Life Sciences Education, 11(1), 47-57. https://doi.org/10.1187/cbe.11-07-0054

Parker, J. M., de los Santos, E. X., y Anderson, C. W. (2013). What learning progressions on carbon-transforming processes tell us about how students learn to use the laws of conservation of matter and energy. Educación Química, 24(4), 399-406. https://doi.org/10.1016/S0187-

X(13)72493-5

Parker, J. M., Santos, E. X. de los, y Anderson, C. W. (2015). Learning progressions y climate change. The American Biology Teacher, 77(4), 232-238. https://doi.org/10.1525/abt.2015.77.4.2

Pedrera, O., Barrutia, O., y Díez, J. R. (2023). Teaching/learning difficulties of the Scientific Model of Plant Nutrition – a systematic literature review (2000-2022). [Manuscrito enviado para publicación]

Roberts, D. A. (2007). Scientific Literacy/Science Literacy. En S. K. Abell y N. G. Lederman (Eds.), Handbook of Research on Science Education (pp. 729-780). Mahwah, NJ: Lawrence Erlbaum Associates.

Schramm, J. W., Jin, H., Keeling, E. G., Johnson, M., y Shin, H. J. (2018). Improved student reasoning about carbon-transforming processes through inquiry-based learning activities derived from an empirically validated learning progression. Research in Science Education, 48(5), 887-911. https://doi.org/10.1007/s11165-016-9584-0

Stern, L., y Roseman, J. E. (2004). Can middle-school science textbooks help students learn important ideas? Findings from Project 2061’s curriculum evaluation study: life science. Journal of

Research in Science Teaching, 41(6), 538-568. https://doi.org/10.1002/tea.20019

Taber, K. S. (2000). Finding the optimum level of simplification: The case of teaching about heat and temperature. Physics Education, 35(5), 320-325. https://doi.org/10.1088/0031-9120/35/5/301

Taber, K. S., y Akpan, B. (Eds.). (2017). Science education: An international course companion. Sense Publishers.

Treagust, D. F., Chittleborough, G., y Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485

Ummels, M. H. J., Kamp, M. J. A., De Kroon, H., y Boersma, K. Th. (2015). Promoting conceptual coherence within context-based biology education. Science Education, 99(5), 958-985. https://doi.org/10.1002/sce.21179

Victorian Curriculum and Assessment Authority (VCAA). (2015). Victorian curriculum: Foundation-10. Victorian curriculum: Foundation-10. https://victoriancurriculum.vcaa.vic.edu.au/

Vosniadou, S. (2019). The development of students’ understanding of science. Frontiers in Education, 4(32). https://doi.org/10.3389/feduc.2019.00032

Wandersee, J. H. (1986). Can the history of science help science educators anticipate students’ misconceptions? Journal of Research in Science Teaching, 23(7), 581-597. https://doi.org/10.1002/tea.3660230703

Willard, T. (2020). The NTSA atlas of the three dimensions. National Science Teaching Association.

Zuza, K., van Kampen, P., De Cock, M., Kelly, T., y Guisasola, J. (2018). Introductory university physics students’ understanding of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(2), 020117. https://doi.org/10.1103/PhysRevPhysEducRes.14.020117

Most read articles by the same author(s)