Recomposición de un rayo de luz blanca descompuesto por un prisma

Descargas

Visitas a la página del resumen del artículo:  2063  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i3.3402

Información

Ciencia recreativa
3402
Publicado: 20-07-2020
PlumX

Autores/as

Resumen

La recomposición de un rayo de luz blanca, descompuesto inicialmente por un prisma, mediante el uso de otro prisma idéntico e invertido respecto al anterior es imposible y, sin embargo, numerosas fuentes (bibliográficas y de internet) suelen presentar este supuesto experimento como una actividad de fácil ejecución e incuestionable resultado. En este artículo se muestra el uso de diferentes elementos ópticos para recomponer un rayo de luz blanca, previamente descompuesto por un prisma. Todos los materiales empleados son de fácil adquisición, y el montaje de los mismos no ofrece ninguna dificultad, lo que permite la realización de estos experimentos cuando se discute la refracción y reflexión de la luz.

Palabras clave: Dispersión cromática; Refracción de la luz; Óptica; Recomposición de luz blanca.

Recomposition of a ray of white light previously decomposed by a prism

The recomposition of a ray of white light, initially decomposed by a prism, by using another identical prism and inverted with respect to the former is impossible and, however, many (bibliographic and internet) sources usually present this supposed experiment as a demonstration of easy execution and unquestionable result. This article shows the use of different optical elements to recompose a ray of white light, previously decomposed by a prism. All the materials employed can be easily acquired and assembled, which allows the use of these experiments when discussing refraction and reflection of light.

Keywords: Chromatic dispersion; Light refraction; Optics; Recomposition of white light.

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alonso M., Finn E. J. (1992) Physics, Wokingham: Addison-Wesley. Fig. 33.29a.

Arora A. (2013) Recombination of White Light (JAL 15A) Video lectures by Ashish Arora.

Avison J. (1989) The World of Physics, 2ª ed. Cheltenham: Thomas Nelson and Sons Ltd. p. 31 Fig. 2.11.

Beaty B. (2020) Science Myths, en K-6 Textbooks and Popular culture. Science Hobbyist. Recuperado de http://amasci.com/miscon/miscon.html

College of Optometrists (2020) Newton and the colour of light.

Del Mazo A., Velasco S., García-Molina R. (2018) El mito de la recomposición de la luz blanca con dos prismas.

Del Mazo A. (2018) El mito del movimiento browniano del polen.

Feliu y Pérez B. (1883) Física experimental y aplicada, y nociones de química, 5ª ed. Barcelona: Imprenta de Jaime Jepús. p. 323.

Feliu y Pérez B. (1896)Tratado elemental de Física experimental y aplicada, 8ª ed. Zaragoza: Tipografía de Comas hermanos. p. 329.

Ganot A. (1859) Traité élémentaire de physique, expérimentale et appliquée, 13ª ed. París: Ganot. p. 487.

García Molina R. (2002) ¿Recomposición de la luz blanca? Cuestión 23 de Simple+mente física.

García-Molina R., Del Mazo A., Velasco S. (2018) A Simple Experimental Setup to Clearly Show that Light Does Not Recombine After Passing Through Two Prisms, The Physics Teacher 56 (1), 14-16.

Gray A. (1851) Natural Philosophy. New York: Harper & Brothers. p. 359.

Greenslade T. (1984) Spectrum recombination, The Physics Teacher 22 (2), 105-108.

Guillemin A. (1868) Les phénomènes de la Physique. París: Librería de L. Hachette et Cie. p. 353.

Hossenfelder S. (2019) Perdidos en la matemáticas. Barcelona: Ariel. p.64

Jargodzki C., Potter F. (2001) Mad about Physics. Braintwisters, Paradoxes, and Curiosities. Nueva York: Wiley.

Kaeppelin R. (1844) Cours élémentaire des sciences physiques. Cours de Physique, 3ª ed. París: Z. Kaeppelin. p. 412.

Lavenda B. (1985) El movimiento browniano. Investigación y Ciencia 103, 36-45.

Lozano y Ponce de León E. (1898) Elementos de Física, 6ª ed. Barcelona: Imprenta de Jaime Jepús y Roviralta. p. 473 Fig. 335.

Mañas y Bonví J. (1935) Óptica aplicada, 2ª ed. Barcelona: Altés. p. 324.

Marcoláin San Juan P. (1912) Elementos de Física moderna y nociones de meteorología. Zaragoza: Tipografía La Editorial. p. 514.

McDonald K. (2018) Recombining rainbows, The Physics Teacher 56 (4), 196-197.

Moray R. (1672) Some Experiments propos'd in relation to Mr. Newton's Theory of light … together with the Observations made thereupon by the Author of that Theory. Philosophical Transactions of the Royal Society 83 (20 May 1672) 4059-4062.

Munroe R. (2011) Comic 964 Dorm Poster.

Newton I. (1671) A Letter of Mr. Isaac Newton … containing his New Theory about Light and Colors. Philosophical Transactions of the Royal Society 80 (19 Feb. 1671/2) 3075-3087.

Newton I. (1730) Opticks, 4ª ed. Londres: William Innys [reeditado por Dover en 1952].

Pregger F. T. (1982) Recombination of spectral colors. The Physics Teacher 20 (9), 403.

Rowlands P. (2017) Newton and Modern Physics. London: World Scientific. p. 111

Sanjurjo R. (1883) Principios fundamentales de Física pura, Tomo I. Madrid: Imprenta y Litografía de La Guirnalda. p. 418 Fig. 439.

Tipler P. A. (1999) Física para la ciencia y la tecnología, Vol. 2, 4ª ed. Barcelona: Reverté. p.1094.

Tutor vista studio (2017) Dispersion of White Light by Glass Prism [Vídeo]

Vidal Fernández, M. C., Sánchez Gómez D. (2017) Física. 2º Bachillerato. Madrid: Santillana. p. 206.

Wilczek F. (2016) El mundo como obra de arte. En busca del diseño profundo de la naturaleza. Barcelona: Crítica. p. 100.

Wilkinson D. (2005) Brown knew particles were smaller than pollen. Nature 434, 137.