Una herramienta para el análisis del nivel de comprensión del modelo de materia de los alumnos de 4º de ESO

Descargas

Visitas a la página del resumen del artículo:  850  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1104

Información

Fundamentos y líneas de trabajo
1104
Publicado: 24-11-2020
PlumX

Autores/as

  • María Ángeles Moltó Palomares (ES) Univesitat Autònoma de Barcelona
  • María Isabel Hernández Rodríguez (ES) Departament de Didàctica de la Matemàtica i de les Ciències Experimentals Universitat Autònoma de Barcelona. España
  • Roser Pintó Casulleras (ES) Departament de Didàctica de la Matemàtica i de les Ciències Experimentals Universitat Autònoma de Barcelona. España.

Resumen

En este estudio, se ha desarrollado una herramienta analítica para caracterizar las concepciones de los estudiantes de 4º de ESO sobre la materia. Se ha considerado que, en este nivel de instrucción, el modelo científico escolar de materia que se utiliza debería ser un modelo avanzado que difiera del modelo básico de materia en la distinción de las partículas entre átomos, moléculas e iones. Este modelo avanzado podría permitir que los estudiantes hicieran interpretaciones bien fundamentadas de los cambios físicos y químicos más importantes de la materia. La herramienta analítica aquí presentada incluye cuatro dimensiones (Conformación, Dinámica, Interacciones y Diversidad). Estas dimensiones abarcan un conjunto de categorías que permiten caracterizar las concepciones de los estudiantes sobre la materia. Para construir esta herramienta analítica definimos un conjunto de dimensiones y categorías inspiradas en las ya establecidas por Talanquer (2009), y que emergen del análisis de las respuestas de los estudiantes cuando representan la materia a nivel submicroscópico.

Palabras clave: modelo de materia básico y avanzado; enseñanza obligatoria

An analytical tool to explore 15-16 year old students’ understanding of an advanced model of matter

Abstract: In this study, an analytical tool has been developed to characterise 15-16 year old students’ conceptions about matter. It has been considered that at this instructional level the school scientific model of matter that is used should be an advanced model that differs from a basic model of matter in the distinction of particles as atoms, molecules and ions. This advanced model could allow students to provide well founded interpretations of most important physical and chemical changes of matter. The analytical tool here reported includes four dimensions (Conformation, Dynamics, Interactions and Diversity). These dimensions encompass a set of categories that allow characterising students’ conceptions of matter. In order to build the analytical tool here reported, we defined a set of dimensions and categories which are drawn upon the ones established by Talanquer (2009) but also emerged from the analysis of students’ answers when representing matter at a submicroscopic level.

Keywords: basic and advanced model of matter, secondary teaching

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adadan, E., Irving, K.E., Trundle, K.C. (2009). Impacts of Multi-representational Instruction on High School Students’ Conceptual Understandings of the Particulates Nature of Matter. International Journal of Science Education, 31(13), 1743-1775.

Albanese, A., Vicentinni, M., (1997) Why do we believe that an atom is colourless? Reflections about the teaching of the particle model. Science and Education 6, 251-261

Andersson, B. (1990). Pupils’ Conceptions of Matter and its Transformations (age 12-16). Studies in Science Education, 18, 53–85

Barke HD., Hazari A., Yitbarek S. (2009) Students’ Misconceptions and How to Overcome Them. In Barke HD., Hazari A., Yitbarek S. (Eds), Misconceptions in Chemistry (pp.21-26), Springer, Berlin, Heidelberg.

Benarroch Benarroch, A. (2000a). El desarrollo cognoscitivo de los estudiantes en el área de la naturaleza corpuscular de la materia. Enseñanza de Las Ciencias, 18(2), 235–246.

Benarroch Benarroch, A. (2000b). Del modelo cinético-corpuscular a los modelos atómicos, Alambique, 23.

Ben-Zvi, R., Eylon, B., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63, 64-66

Chang, R., (2002). Química (pp. 182 y 418) McGraw-Hill Interamericana Editores, S.A.

Cheng, M., Gilbert, J.K. (2009). Towards a Better Utilization of Diagrams in Research into the Use of Representative Levels in Chemical Education. In Gilbert, J.K. and Treagust, D. (Eds.), Multiple Representations in Chemical Education (pp. 55-73). Springer Science+ Bussiness Media B.V.

Cheng, M., Gilbert, J.K. (2017). Modelling students' visualisation of chemical reaction, International Journal of Science Education, 39(9), 1173-1193

Cheng, M. (2018). Students' visualisation of chemical reactions- insights into the particle model and atomic model. Chemistry Education Research and Practice, 19, 227-239

de Vos, W., Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching, 33, 657–664.

Duit, R., Gropengießer, H., Kattmann, U. (2005). Towards science education research that is relevant for improving practice: the model of educational reconstruction. In Fischer, H.E. (Ed.) Developing Standards in Research on Science Education (pp. 1-9) London: Taylor and Francis

Griffiths, A.K., Preston, K.R. (1992). Grade-12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29, 611-628

Hadenfeldt, J. C., Liu, X., Neumann, K. (2014). Framing students’ progression in understanding matter: a review of previous research. Studies in Science Education, 50(2), 181–208.

Harrison, A. G., Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. Gilbert, O. De Jong, R. Justi, D. F. Treagust, Van Driel Jan H. (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Boston: Kluwer Academic Publisher.

Izquierdo-Aymerich, M. & Adúriz-Bravo, A. (2003). Epistemological Foundations of School Science. Science Education 12, 27-43.

Johnson, P. (1998). Progression in children’s understanding of a ‘basic’ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393–412.

Johnson, P., Tymms, P. (2011). The emergence of a learning progression in middle school chemistry. Journal of Research in Science Teaching, 48(8), 849–877.

Liu, X., Lesniak, K. (2005). Students’ progression of understanding of the matter concept from elementary to high school. Science Education, 89, 433–450.

Liu, X., Lesniak, K. (2006). Progression in children’s understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 43(3), 320–347.

Marton, F. (1981). Phenomenography-describing conceptions of the world around us. Instructional Science, 10, (2), 177-200

Moltó. M.A., Pintó, R. (2013). L'ús del triplet de la química en la construcció del concepte dissolució a primer de batxillerat. Universitat Autònoma de Barcelona.

Renström, L., Andersson B., Marton, F. (1990). Students’ Conceptions of Matter. Journal of Educational Psychology, 82(3), 555–569.

Smith, C. L., Wiser, M., Anderson, C. W., Krajcik, J. S. (2006). Implications of Research on Children’s Learning for Standards and Assessment: A Proposed Learning Progression for Matter and the Atomic-Molecular Theory. Measurement: Interdisciplinary Research & Perspective, 4(1–2), 1–98.

Stern, L., Ahlgren, A. (2002). Analysis of students' assessments in middle school curriculum materials: Aiming precisely at benchmarks and standards. Journal of Research in Science

Teaching, 39(9), 889-910.

Stevens, S. Y., Delgado, C., Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715.

Talanquer, V. (2009). On Cognitive Constraints and Learning Progressions: The case of “structure of matter.” International Journal of Science Education, 31(15), 2123–2136.

Talanquer, V. (2018). Progression in reasoning about structure-property relationships. Chemistry Education Research and Practice. 19, 998-1009.

Wiser, M., Smith, C.L. (2008). Learning and Teaching about Matter in Grades K-8: What Should the Atomic- Molecular Theory be Introduced? In Vosniadou, S. (Ed.), International Handbook of Research on conceptual change (pp. 205-239). Routledge, New York.