Estrategia CMID adaptada a la virtualidad para estudiar el equilibrio térmico en formación inicial docente

Descargas

Visitas a la página del resumen del artículo:  266  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i3.3201

Información

Experiencias, recursos y otros trabajos
3201
Publicado: 03-05-2023
PlumX

Autores/as

Resumen

Se describe la aplicación de la estrategia Clase Magistral Interactiva con Demostración adaptada a la virtualidad para estudiantes de quinto año de pedagogía en Matemáticas y Física. Se analizan los resultados bajo el enfoque orientado al nivel de comprensión del estudiantado del concepto de equilibrio térmico y al ámbito pedagógico. Al inicio un 83% de los estudiantes poseen ideas previas inadecuadas sobre la evolución temporal de la temperatura de dos objetos en contacto térmico, ambos con distinta masa y diferentes temperaturas iniciales. Luego de aplicar la estrategia, se determinó el factor de Hake para conocer la ganancia de aprendizaje que fue de 0,429, lo que se considera una ganancia media. En el formulario ticket de salida se aprecia la alta valoración de la CMID por parte de los profesores en formación para su labor docente, destacándose la importancia del aprendizaje social y el proceso de reconstrucción de conceptos a través de un ejercicio de metacognición.

Palabras clave: Clase magistral interactiva con demostración; formación inicial docente; enseñanza y aprendizaje en contexto de virtualidad; equilibrio térmico.

ILD strategy adapted to virtuality to study thermal equilibrium in initial teacher training

Abstract: The use of the Interactive Lecture Demonstrations strategy adapted to virtual session to a fifth-year student teachers’ class is described. The results are analyzed under the approach oriented to the student teachers' level of understanding of the concept of thermal equilibrium and to their pedagogical knowledge. At the beginning, 83% of the students had inadequate previous ideas about how the temperature of two objects in thermal contact, both with different mass and different initial temperatures, change over time. After applying the strategy, Hake's factor was determined to know the learning gain. Its value was 0,429, which is considered a medium gain. The student teachers’ exit ticket showed the high valuation given by them to the ILD strategy. Student teachers highlighted the importance of social learning and the process of their own physics concept reconstruction through a metacognition exercise.

Keywords: Interactive Lecture Demonstrations; initial teacher training; teaching and learning in the context of virtuality; thermal equilibrium.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Buchanan, S., Harlan, M. A., Bruce, C. S. y Edwards, S. L. (2016). Inquiry based learning models, information literacy, and student engagement: A literature review. School Libraries Worldwide, 22(2), 23-39.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A. y Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. http://www.bscs.org/pdf/5EFull Report. pdf

Carlton, K. (2000). Teaching about heat and temperature. Physics Education, 35(2), 101.

Díaz-Delgado, R. A. y Maringer-Duran, D. A. (2021). La enseñanza del concepto de fuerza: algunas reflexiones. Lat. Am. J. Sci. Educ, 8, 12006.

Díaz-Delgado, R. A., Menéndez-Proupin, E., Carreño, M. J., Díaz, R. y Lizana, K. (2020). Experiencia de clases activas en un curso de introducción a la mecánica en el ámbito universitario [Libro de Actas]. VI Encuentro Nacional de Didáctica de la Física. ISBN 978-956-330-073-4. Chile. https://www.ucentral.cl/ucentral/site/docs/20210503/20210503172433/libro_de_actas_enfi_2020___isbn_978_956_330_073_4.pdf

Gunstone, R. y White, R. (1990). Understanding of gravity. Science education. Vol. 65, Nº 3, pp. 291-299.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American journal of Physics, 66(1), 64-74.

Kurniawan, Y., Suhandi, A. y Hasanah, L. (2016). The influence of implementation of interactive lecture demonstrations (ILD) conceptual change oriented toward the decreasing of the quantity students that misconception on the Newton’s first law. In AIP Conference Proceedings (Vol. 1708, No. 1, p. 070007). AIP Publishing LLC. https://doi.org/10.1063/1.4941180

Laws, P. W. y Thornton, R. K. (1993). FIPSE Interactive Physics Project (October 1989-August 1993). Final Report. https://eric.ed.gov/?id=ED461492.

Laws, P., Sokoloff, D. y Thornton, R. (1999). Promoting Active Learning Using the Results of Physics Education Research. UniServe Science News, Vol. 13.

http://sydney.edu.au/science/uniserve_science/newsletter/vol13/sokoloff.html

Milner-Bolotin, M., Kotlicki, A. y Rieger, G. (2007). Can students learn from lecture demonstrations. J Coll Sci Teach, 36, 45-49.

Prince, M. (2004). Does active learning work? A review of the research. Journal of engineering education, 93(3), 223-231.

Redish, E. F., Saul, J. M. y Steinberg, R. N. (1997). On the effectiveness of active-engagement microcomputer-based laboratories. American journal of physics, 65(1), 45-54.

Sanmartí, N. (1997). Enseñar y aprender ciencias: algunas reflexiones. http://www.pedagogiapucv.cl/wp-content/uploads/2017/07/Ense%C3%B1anza-de-las-Ciencias-Neus-Sanmart%C3%AD.pdf

Sharma, M. D., Johnston, I. D., Johnston, H., Varvell, K., Robertson, G., Hopkins, A., Stewart, C., Cooper, I. y Thornton, R. (2010). Use of interactive lecture demonstrations: A ten-year study. Phys. Rev. S T Phys. Educ. Res. 6. 020119. https://doi.org/10.1103/PhysRevSTPER.6.020119

Sokoloff D.R. y Thornton R.K. (1997). Using interactive lecture demonstrations to create an active learning environment, The Physics Teacher, 35, 340- 347.

Sokoloff, D. y Thornton, R. (2017). Active Learning with Interactive Lecture Demonstrations. New Faculty Workshop, American Center for Physics, June 13, 2017.

https://www.aapt.org/Conferences/newfaculty/upload/Thornton-Sokoloff-Interactive-Demos.pdf

Sokoloff, D. (2021). Home Adapted ILDs. https://pages.uoregon.edu/sokoloff/IntroHTDemo2.mp4

Tanahoung, C., Chitaree, R., Soankwan, C., Sharma, M. D. y Johnston, I. D. (2009). The effect of interactive lecture demonstrations on students’ understanding of heat and temperature: a study from Thailand. Research in Science & Technological Education, 27(1), 61-74.

Taufiq, M., Suhandi, A. y Liliawati, W. (2017). Effect of science magic applied in interactive lecture demonstrations on conceptual understanding. In AIP Conference Proceedings (Vol. 1868, No. 1, p. 070007). AIP Publishing LLC.

Thornton, R.K. y Sokoloff, D.R. (1990). Learning motion concepts using real-time, microcomputer-based laboratory tools. Am. J. Phys. 58, 858-867.

Thornton, R. K. (1996). Using large-scale classroom research to study student conceptual learning in mechanics and to develop new approaches to learning. In Microcomputer–Based Labs: Educational Research and Standards (pp. 89-114). Springer. Heidelberg.

Thornton, R. K. (1997). Learning physics concepts in the introductory course: microcomputer-based labs and interactive lecture demonstrations. In Proc Conf on Intro Physics Course (pp. 69-86).

Zimrot, R. y Ashkenazi G. (2007), Interactive lecture demonstrations: a tool for exploring and enhancing conceptual change, Chemistry Education Research and Practice, 8, 197-211.