Design based Research on Teaching-Learning Sequences: an emerging line of research in Science Teaching

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i1.1801

Info

Investigaciones de diseño
1801
Published: 21-12-2020
PlumX

Authors

  • Jenaro Guisasola Aranzabal (ES) Universidad del País Vasco. San Sebastián. España
  • Jaume Ametller (ES) Departamento de Didacticas Específicas, Universitat de Girona. Facultat d’Educacio i Psicologia. Girona. España https://orcid.org/0000-0002-9289-6718
  • Kristina Zuza (ES) Departamento de Física Aplicada y DoPER, Universidad del País Vasco (UPV/EHU). Escuela de Ingeniería de Gipuzkoa. Donostia. España

Abstract

For decades, design based research on Teaching-Learning Sequences has become an increasingly accepted line of research for the theoretical and empirical study of learning in the midst of complex educational interventions in the classroom. We begin with a brief review of the research tradition in Teaching-Learning Sequences in Science Education and its relationship to design-based research. Next, design-based research is described as a research methodology, that is, as a procedure that provides guidelines for research development. Finally, we discuss the key elements that define design-based research and what evidence is offered to support the achievements of this type of research.

Keywords

Teaching-Learning Sequences, Design-based Research, DBR methodology characteristics

Downloads

Download data is not yet available.

References

Acevedo -Díaz, J. A., Vázquez-Alonso, Á., Manassero-Mas, M. A., & Acevedo-Romero, P. (2007). Consensos sobre la naturaleza de la ciencia: aspectos epistemológicos. Revista Eureka sobre enseñanza y divulgación de las ciencias, 4(2), 202-225

Alghamdi, A. H., & Li, L. (2013). Adapting design-based research as a research methodology in educational settings. International Journal of Education and Research, 1(10), 1-12.

Ametller, J., Leach, J., & Scott, P. (2007). Using perspectives on subject learning to inform the design of subject teaching: an example from science education. The curriculum journal, 18(4), 479-492.

Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The journal of the learning sciences, 13(1), 1-14.

Becker, J. P., & Shimada, S. (Eds.) (1997). The open-ended approach: A new proposal for teaching mathematics. Virginia: NCTM.

Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational psychologist, 39(4), 243-253.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. Journal of the Learning Sciences, 2, 141-

Carr W. and Kemmis, S. (1986) Becoming Critical: Education Knowledge and Action Research (Routledge, Taylor & Francis, London

Cherryholmes, C. H. (1992). (Re)clamación de pragmatismo para la educación. Revista de educación, (297), 229-261.

Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science:

Minnesota Studies in the Philosophy of Science, (pp. 129–186). Minneapolis, MN:University of Minnesota Press

Children's Learning in Science. Project CLIS. (1987) CLIS in the classroom. Approaches to teaching. Leeds, UK. University of Leeds. Centre for Studies in Science and Mathematics Education

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

Cohen, L., Manion, L., & Morrison, K. (2013). Research methods in education. Routledge.

Collins, A. (1992) Toward a design science of education. In E. Scanlon, & T. O’Shea (Eds.), New directions in educational technology (pp. 15-22). New York: Springer-Verlag.

Design-based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8.

Dewey, J. (1916). Method in science teaching. Science Education, 1, 3-9. Reproducido con una nueva introducción del autor(1945). Science Education, 29, 119-123. ).

Dewey, J. (1938). Logic, the theory of inquiry. New York: H. Holt and Co.

Duit, R. Gropengiesser, H. and Kattmann, U. (2005) Towards science education research that is relevant for improving practice: The model of educational reconstruction. In H.E. Fischer, Ed., Developing standards in research on science education (pp. 1-9). London: Taylor & Francis.

Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction–A framework for improving teaching and learning science. In D.

Jorde and J. Dillon (eds.), Science Education Research and Practice in Europe: Retrospective and Prospective (13–37). Sense Publishers..

Duschl, R. A. (1990). Restructuring science education. New York: Teachers College Press.

Easterday M., Rees Lewis D., and Gerbe E., (2014) Design-based research process: Problems, phases, and applications, in Proceedings of International Conference of Learning Sciences, edited by J. L. Polman, E. A. Kyza, D. K. O’Neill, I. Tabak, W. R. Penuel, A. S. Jurow, K. O’Connor, T. Lee, and L. D’Amico (International Society of the Learning Sciences, Boulder, CO), pp. 317–324.

Fensham, P. (2001). Science content as problematic - issues for research. In H. Behrendt, H. Dahncke, R. Duit, W. Gräber, M. Komorek, A. Kross & P. Reiska (Eds.), Research in Science Education - past, present, and future (pp. 27–41). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Fernández, C., & Yoshida, M. (2004). Lesson study. A Japanese approach to improving mathematics learning and teaching. Mahwah: Erlbaum.

Frick, R. W. (1998) Interpreting statistical testing: Process and propensity, not population and random sampling, Behavior Research Methods, Instrument and Computer 30, 527

Furió, C., & Guisasola, J. (1998). Difficulties in learning the concept of electric field. Science Education, 82(4), 511-526.

Furió, C., Guisasola, J., Almudí, J., & Ceberio, M. (2003). Learning the electric field concept as oriented research activity. Science Education, 87(5), 640-662.

Furió-Más, C., Domínguez-Sales, M. C., & Guisasola, J. (2012). Diseño e implementación de una secuencia de enseñanza para introducir los conceptos de sustancia y compuesto químico. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 30(1), 113-129.

Garzón, I., De Cock, M., Zuza, K., Van Kampen, P., & Guisasola, J. (2014). Probing university students' understanding of electromotive force in electricity. American Journal of Physics, 82(1), 72-79.

Gil, D., & Martínez Torregrosa, J. (1987). Los programas-guía de actividades: una concreción del modelo constructivista de aprendizaje de las ciencias. Revista Investigación en la Escuela, 3, 3-12.

Gil, D., Carrascosa, J., Furió, C., & Martínez-Torregrosa, J. (1991). La enseñanza de las ciencias en la educación secundaria. Barcelona: Horsori, 232.

Gil, D., Guisasola, J., Moreno, A., Cachapuz, A., De Carvalho, A. M. P., Torregrosa, J. M., ... & Dumas-Carré, A. (2002). Defending constructivism in science education. Science & Education, 11(6), 557-571.

Guisasola, J. (2014). Teaching and learning electricity: The relations between macroscopic level observations and microscopic level theories. In M. Matthews (ed.) International handbook of research in history, philosophy and science teaching (pp. 129-156). Springer, Dordrecht.

Guisasola, J., Zubimendi, J. L., & Zuza, K. (2010). How much have students learned? Research-based teaching on electrical capacitance. Physical Review Special Topics-Physics Education Research, 6(2), 020102.

Guisasola, C. Furió, and M. Ceberio (2008) Science Education based on developing guided research, edited by M. V. Thomase, Science Education in Focus, Nova Science Publisher, 55-85.

Guisasola, J., Almudí, J. M., & Furió, C. (2005). The nature of science and its implications for physics textbooks. Science & Education, 14(3-5), 321-328

Guisasola J., Ceberio, J.M., Almudí & J.L. Zubimendi (2011). La resolución de problemas basada en el desarrollo de investigaciones guiadas en cursos introductorios de física universitaria.

Enseñanza de las Ciencias, 29(3), 0439-452) o poner aquí ya los resultados de alternativas?

Guisasola, J., Zuza, K., Ametller, J., & Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139.

Heller, P., Keith, R. & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627-636)

Heron, P.R. and McDermott, L. C. (1998) Bringing the gap between teaching and learning in geometrical optics, Optics and photonics new 9, 30

Heron, P. R. Shaffer, P.S. and McDermott, L. C. (2005) Research as a Guide to Improving Student Learning: An Example from Introductory Physics, Assessment and Education Research, En Invention and impact: building excellence in undergraduate science, technology,

engineering and mathematics (STEM) education 33-37. Whasington,DC: American Association for Advancement of Science.

Hino, K. (2007). Toward the problem-centered classroom: Trends in mathematical problem solving in Japan. ZDM. International Journal on Mathematics Education, 39(5–6), 503–514.

Hookway, C. (2000). Pragmatism: commonsense and limits of Science. In M. W. F.Stone & Wolff, J. (Eds.) The Proper Ambition of Science, 2, 103-121. Routledge.

Isoda, M., Stephens, M., Ohara, Y., & Miyakawa, T. (2007). Japanese lesson study in mathematics: Its impact, diversity and potential for educational improvement. Singapore: World Scientific.

Juuti, K., & Lavonen, J. (2006). Design-based research in science education: One step towards methodology. NorDiNa, 4, 54-68.

Kelly, A. (2003). Research as design. Educational Researcher, 32(1), 3–4.

Kortland, J., & Klaassen, C. J. W. M. (2010). Designing theory-based teaching-learning sequences for science. In Proceedings of the symposium in honour of Piet Lijnse at the time of his retirement as professor of Physics Didactics at Utrecht University.

Leach, J., & Scott, P. (2003). Individual and sociocultural views of learning in science education. Science & education, 12(1), 91-113.

Leach, J. y Scott P. (2002). Designing and Evaluating Science Teaching Sequences: An Approach Drawing upon the Concept of Learning Demand and a Social Constructivist Perspective on Learning. Studies in Science Education, 38, 115.

Leach, J., Ametler, J., Hind, A., Lewis, J., & Scott, P. (2006). Implementing and evaluating teaching interventions: Towards research evidence-based practice? In R. Millar, J. Leach, J.

Osborne, & M. Ratcliffe (Eds.), Improving teaching and learning in science: Towards evidence-based practice (pp. 79–99). London: RoutledgeFalmer.

Leach J., Ametller J. and Scott, P. (2010) Establishing and communicating knowledge about teaching and learning scientific content: The role of design briefs. In K. Kortland & K. Klaassen (eçEds.), Designing Theory-Based Teahing-Learning Sequences for Science Education (pp. 7-36). CDBeta Press, Utrechet.

Leslie-Pelecky, D. L. (2000). Interactive worksheets in large introductory physics courses. The Physics Teacher, 38(3), 165–167.

Lijnse, P. L. (1995). “Developmental research” as a way to an empirically based “didactical structure” of science. Science education, 79(2), 189-199.

Lijnse, P. L. (1994). Trends in European research in science education. Second European Summerschool, Tessaloniki.

Lijnse, P.L., and Klaassen, C. W. J. M. (2004). Didactical structures as an outcome of research on teaching-learning sequences? International Journal of Science Education, 26, 537-554.

Matthews, M.R.: 1994, Science teaching: the role of history and philosophy of science. Taylor & Francis Inc.

Maxwell, J. A. (2004) Causal explanation, qualitative research and scientific inquiry in education. Educational Researcher 33, 3.

McDermott, L. C. (1991). Millikan Lecture 1990: What we teach and what is learned—Closing the gap. American journal of physics, 59(4), 301-315.

McDermott, L. C., Shaffer, P. S., & the Physics Education Group at University of Whasington (1996)., Physics by Inquiry. Jhon Wiley & Sons. Inc. NY.

McKenney, S. & Reeves, T. C. (2018) Conducting educational design research. Routledge

Méheut, M., & Psillos, D. (2004). Teaching–learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515-535.

Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press

Nieveen N. (2009), Formative evaluation in educational design research, T. Plomp and N. Nieveen (Eds.) An introduction to educational design research (Enschede: SLO) pp. 89-101.

Nohda, N. (2000). Teaching by open-approach method in Japanese mathematics classroom. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education (vol. 1, (pp. 39–53)). Japan: PME, Hiroshima University.

Phillips, D. C. (2006). Assessing the quality of design research proposals: Some philosophical perspectives. Educational design research, 93-99.

Reeves, T. C. (2006). Design research from a technology perspective. In J. van Den Akker, K. Gravemeijer, S. Mckenney & N. Nieveen (Eds.), Educational design research (pp. 52-66): Routledge.

Reeves, T., Herrington, J., and Oliver, R. (2005). Design research: A socially responsable approach to instructional technology research in higher education. Journal of Computing in Higher Education, 16(2), 97–116.

Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational researcher, 38(5), 329-342.

Savall, F., Domènech-Blanco, J. L., Guisasola, J., & Martínez-Torregrosa, J. (2016). Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation. Physical Review Physics Education Research, 12(1), 010132)

Savall, F., Guisasola, J., Cintas, S. R., & Martínez-Torregrosa, J. (2019). Problem-based structure for a teaching-learning sequence to overcome students’ difficulties when learning about atomic spectra. Physical Review Physics Education Research, 15(2), 020138.

Scott, P. H., Mortimer, E. F., & Aguiar, O. G. (2006). The tension between authoritative and dialogic discourse: A fundamental characteristic of meaning making interactions in high school science lessons. Science education, 90(4), 605-631.

Solbes, J., Guisasola, J., & Tarín, F. (2009). Teaching energy conservation as a unifying principle in physics. Journal of Science Education and Technology, 18(3), 265-274.

Tiberghien, A. (1996). Construction of prototypical situations in teaching the concept of energy. Research in science education in Europe, 100-114.

Tiberghien, A. (2000). Designing teaching situations in the secondary school. In Improving science education: The contribution of research, 27-47.

Tiberghien, A., Vince, J., & Gaidioz, P. (2009). Design‐based Research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275-2314.

Tobin, K., & Tippins, D. (1993). Constructivism: A paradigm for the practice of science education. The practice of constructivism in science education, 3-21.

Toulmin, Stephen (1999). Knowledge as shared procedures. In Yrjö Engeström, Reijo Miettinen & Raija-Leena Punamäki-Gitai (eds.), Perspectives on Activity Theory. Cambridge University Press. pp. 53--64.

van den Akker, J. (1999). Principles and methods of development research. In J. van den Akker, N. Nieveen, R. M. Branch, K. L. Gustafson & T. Plomp (Eds.), Design methodology and developmental research in education and training (pp. 1-14). The Netherlands: Kluwer Academic Publishers

Verdu, R. y Martinez-Torregrosa, J. (2004). La estructura problematizada de los temas y cursos de Física y Química como instrumento de mejora de su enseñanza y aprendizaje (Resis doctoral, Universitat de València). Disponble en: https://rua.ua.es/dspace/bitstream/10045/2782/1/tesis.pdf

Wong, D., y Pugh, K., (2001), Learning Science: A Deweyan Perspective, Journal. of Research in Science Teaching, 38(3) 317-336.

Zuza, K. Almudi, J.M. Leniz, A., and Guisasola, J. (2014) Addressing students’ difficulties with Faraday’s law: A guided problem solving approach, Physical Review Special Topics - Physics Education Research 10, 010122 .

Zuza, K., Garmendia, M., Barragués, J. I., & Guisasola, J. (2016). Exercises are problems too: implications for teaching problem-solving in introductory physics courses. European Journal of Physics, 37(5), 055703

Zuza, K., van Kampen, P., De Cock, M., Kelly, T., & Guisasola, J. (2018). Introductory university physics students’ understanding of some key characteristics of classical theory of the electromagnetic field. Physical Review Physics Education Research, 14(2), 020117

Zuza, K., De Cock, M., van Kampen, P., Kelly, T., & Guisasola, J. (2020) Guiding students towards an understanding of the electromotive force concept in electromagnetic phenomena through a teaching-learning sequence Physical Review Physics Education Research, 16(2), 020110

Zuza, K., Sarriugarte, P., Ametller, J., Heron, P.R.L.. y Guisasola, J. (2020) Towards a research program in designing and evaluating teaching materials: An example from DC resistive circuits in introductory physics. Physical Review Physics Education Research (aceptado para su publicación)