The interpretation of the tides phenomenon as a focus for the design of a didactic proposal

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i3.3802

Info

Investigaciones de diseño
3802
Published: 01-09-2021
PlumX

Authors

Abstract

Se presenta una secuencia didáctica diseñada para facilitar la comprensión del fenómeno de las mareas e involucrar a los participantes en procesos de modelización. Esto implica la construcción, revisión y reconstrucción de modelos, así como la reflexión en torno a su naturaleza y su papel en la enseñanza de la ciencia. El objetivo de este artículo es describir y caracterizar dicha secuencia, así como su implementación en el aula. Ésta sigue las pautas marcadas en las investigaciones de diseño: etapa preparatoria, etapa de implementación de dos ciclos y estudio retrospectivo. Los resultados del estudio preparatorio reafirmaron las dificultades en la enseñanza y aprendizaje de este tema: los profesores en las entrevistas mostraron su complejidad en diferentes ámbitos; el análisis de los libros de texto detectó posibles mejoras escritas y visuales, y los cuestionarios previos identificaron en los estudiantes ideas iniciales alejadas del modelo de ciencia escolar. En cuanto a la implementación, la trayectoria de progresión propuesta resultó ser apropiada, al igual que la organización de las actividades en el marco de la modelización. Además, se obtuvieron mejoras en los resultados del segundo ciclo de implementación. Por último, el análisis retrospectivo conllevó la realización de dos grandes tipos de cambios en la secuencia inicial y detectó una progresión en los modelos de la mayoría de los estudiantes.

Palabras clave: Estudio retrospectivo; Investigación basada en el diseño; Mareas; Modelos; Secuencia de enseñanza-aprendizaje.

The interpretation of the tides phenomenon as a focus for the design of a didactic proposal

Abstract: A didactic sequence designed to facilitate the understanding of the tides phenomenon and involve participants in modeling processes is presented. This involves the construction, revision and reconstruction of models, as well as reflection on their nature and their role in the teaching of science. The objective of this article is to describe and characterize said sequence, as well as its implementation in the classroom. This one follows the guidelines set by design based research: preparatory stage, two-cycle implantation stage, and retrospective study. The results of the preparatory study reaffirmed the difficulties in teaching and learning this topic: the teachers in the interviews showed its complexity in different areas, the analysis of the textbooks detected possible written and visual improvements, and the previous questionnaires identified in the students’ initial ideas were far removed from the school science model. Regarding implementation, the proposed progression trajectory turned out to be appropriate, as was the organization of activities within the framework of modeling. In addition, improvements were obtained in the results of the second implementation cycle. Finally, the retrospective analysis involved the realization of two main types of changes in the initial sequence and detected a progression in the models of most of the students.

Keywords: Retrospective study; Design based research; Tides; Models; Teaching-learning sequences.

Keywords


Downloads

Download data is not yet available.

References

Acher A. (2014) Cómo facilitar la modelización científica en el aula. Tecné, Episteme y Didaxis: TED 36, 63-75. http://dx.doi.org/10.17227/01213814.36ted63.75

Armario M., Jiménez-Tenorio N., Oliva J.M. (2019) El fenómeno de las mareas y su explicación. Una propuesta de progresión para su enseñanza. Alambique Didáctica de las Ciencias Experimentales 95, 31-37.

Armario M., Jiménez-Tenorio, N., Oliva, J.M. (2021) Secuencia didáctica sobre el fenómeno de las mareas. Rodin. Repositorio Oficial de la Universidad de Cádiz. http://hdl.handle.net/10498/25254

Armario M., Oliva J.M., Jiménez-Tenorio, N. (2021) Spanish preservice primary school teachers’ understanding of the tides phenomenon. International Journal of Science and Mathematics Education (en prensa).

Arteaga P., Batanero C., Cañadas G., Contreras J.M. (2011) Las tablas y gráficos estadísticos como objetos culturales. Números: Revista de Didáctica de las Matemáticas 76, 56-67.

Ballantyne R. (2004) Young student’s conceptions of the marine environment and their role in the development of aquaria exhibits. GeoJounal 60, 159-163. https://doi.org/10.1023/B:GEJO.0000033579.19277.ff

Clement J. (2000) Model based learning as a key research area for science education. International Journal of Science Education 22 (9), 1041-1053. doi:10.1080/095006900416901

Camelo F.J., Rodríguez S.J., Santiesteban S.N. (2007) Ideas previas. Un constructo indispensable en el diseño de situaciones en el aula: un ejemplo en ciencias. Horizonte Pedagógico 9 (1), 89-100.

Corrochano D., Gómez-Gonçalves A., Sevilla J., Pampín-García S. (2017) Ideas de estudiantes de instituto y de universidad acerca del significado y el origen de las mareas. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 14 (2), 353–366. http://dx.doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2017.v14.i2.05

Delgado-Serrano R., Cubilla K. (2012) La necesidad de investigar la comprensión de conceptos básicos, de Astronomía y Ciencias en general, en pre-media y media. Latin American and Caribbean Conference for Engineering and Technology 10, 23-27.

Galili I., Lehavi Y. (2003) The importance of weightlessness and tides in teaching gravitation. American Journal of Physics 71 (11), 1127-1135. doi:10.1119/1.1607336

Galperin D., Raviolo, A. (2014) Sistemas de referencia en la enseñanza de la Astronomía. Un análisis a partir de una revisión bibliográfica. Latin American Journal of Physics Education, 8, 136-148.

Garrido A. (2016) Modelització i models en la formació inicial de mestres de primària des de la perspectiva de la pràctica científica (Tesis). Universidad autónoma de Barcelona, Bellaterra.

Gilbert J.K., Justi R. (2016) Modelling-based teaching in science education. Basel: Springer.

Gobert J.D., Buckley B.C. (2000) Introduction to model-based teaching and learning in science education. International Journal of Science Education 22 (9), 891-894. https://doi.org/10.1080/095006900416839

Guy-Gaytán C., Gouvea J.S., Griesemer C., Passmore C. (2019) Tensions between learning models and engaging in modeling. Exploring implications for science classrooms. Science & Education 28, 843-864. https://doi.org/10.1007/s11191-019-00064-y

Halloun I. (2007) Mediated modeling in science education. Science & Education 16, 653-697. https://doi.org/10.1007/s11191-006-9004-3

Hartel H. (2000) The tides: a neglected topic. Physics Education 35 (1), 40-45.

Jorba J., Sanmartí N. (1996) El desarrollo de las habilidades cognitivolingüísticas en la enseñanza de las ciencias. Mimeo: Barcelona.

Johnson-Glenberg M., Lindgren R., Koziupa T., Bolling A., Nagendran A., Birchfield D., Cruse J. (2012) Serious games in embodied mixed reality learning environments. Games Learning and Society Conference 8, 8.

Justi R., Gilbert J.K. (2002) Modelling teachers´ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education 24 (4), 369-387. doi:10.1080/09500690110110142

Kallai A.Y., Reiner M. (2010) The source of misconceptions in physics: when event-related potential components N400 and P600 disagree. Front. Neurosci. Conference Abstract: EARLI SIG22 - Neuroscience and Education. doi: 10.3389/conf.fnins.2010.11.00065

López V. (2014) Aprende: las mareas. Programa 'Con-ciencia' de Canal Sur TV, Recuperado de: https://www.youtube.com/watch?v=YCQB6HDBuyE

Molina M., Castro E., Molina J.L., Castro E. (2011) Un acercamiento a la investigación de diseño a través de los experimentos de enseñanza. Enseñanza de las Ciencias 29 (1), 075-088.

Nicolaou C.T., Constantinou C.P. (2014) Assessment of the modeling competence: A systematic review and synthesis of empirical research. Educational Research Review 13, 52-73. https://doi.org/10.1016/j.edurev.2014.10.001

Norsen T., Dreese M., West C. (2017) The gravitational self-interaction of the Earth’s tidal bulge. American Journal of Physics 85 (9), 663-669. doi:10.1119/1.4985124

Odden T.O.B., Russ R.S. (2018) Defining sensemaking: bringing clarity to a fragmented theoretical construct. Science Education 103 (1), 187–205. doi:10.1002/sce.21452

Oh J.Y. (2014) Understanding the alternative conceptions of pre-service secondary science teachers about tidal phenomena based on Toulmin’s argumentation. International Journal of Science and Mathematics Education 12 (2), 353-370.

doi:10.1007/s10763-013-9403-2

Oh S.P., Oh S.J. (2011) What teachers of science need to know about models: an overview. International Journal of Science Education 33 (8), 1109-1130. doi:10.1080/09500693.2010.502191

Oliva J.M. (2019) Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias 37 (2), 5-24.

Pozo J.I., Pérez M.P., Sanz A., Limón M. (1992) Las ideas de los alumnos sobre la Ciencia como teorías implícitas. Infancia y Aprendizaje 57, 3-22.

Railsback L.N. (1991) A model for teaching the dynamical theory of tides. Journal of Geological Education 39 (1), 15-18. doi:10.5408/0022-1368-39.1.15

Reiner, M. y Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22(5), 489-506. https://doi.org/10.1080/095006900289741

Reiner M., Burko L. (2003) On the limitations of thought experiments in physics and the consequences for physics education. Science and Education 12, 385–358. https://doi.org/10.1023/A:1024438726685

Seel N.M. (2017) Model-based learning: A synthesis of theory and research. Educational Technology Research and Development 65 (4), 931-966. https://doi.org/10.1002/tea.2031110.1007/s11423-016-9507-9

Simanek D.E. (2015) Tidal Misconceptions. Recovered from: https://www.lockhaven.edu/~dsimanek/scenario/tides.htm

Solbes J., Palomar R. (2011) ¿Por qué resulta tan difícil la comprensión de la Astronomía a los estudiantes? Didáctica de las ciencias experimentales y sociales 25, 187-211.

Solbes J., Tuzón P. (2014) Indagación y modelización del núcleo atómico y sus interacciones. Alambique: Didáctica de las ciencias experimentales 78, 34-12.

Stubbs M. (1983) Language, schools and classrooms. London: Metheun.

Ucar S., Trundle K.C., Krissek L. (2011) Inquiry-based instruction with archived, online data: An intervention study with preservice teachers. Research in Science Education 41 (2), 261–282. doi:10.1007/s11165-009-9164-7

Velentzas A., Halkia K. (2013) The use of thought experiments in teaching physics to upper secondary-level students: Two examples from the theory of relativity. International Journal of Science Education 35 (18), 3026-3049.

doi:10.1080/09500693.2012.682182

Viiri J. (2000) Students' understanding of tides. Physics Education 35, 105. doi:10.1088/0031-9120/35/2/305

Viiri J., Saari H. (2004) Research-based teaching unit on the tides. International Journal of Science Education 26, 463–481. doi:10.1080/0950069032000072791

Watson J.M. (2006) Statistical literacy at school: growth and goals. Mahwah, NJ: Lawrence Erlbaum Associates.