Prototype of a modular spectrophotometer for chemistry education
Downloads
- PDF (Español (España)) 650
- EPUB (Español (España)) 28
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 29
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2402Info
Abstract
Abstract: The article presents a prototype designed for higher education, this prototype is a modular spectrophotometer, which consists of three modules, the first module is the light source, the second module is the cuvette holder in which the electronic transitions occur and in the third module the electronic transitions that occur in the second module are converted into numerical data. This prototype has the advantage of being mobile, it does not become out of calibration, because it uses a set of light emitting diodes (LEDs) as a light source. This prototype measures impedances of a photoresistor, which is affected by the electronic transitions occurring in the second module. This modular spectrophotometer prototype allows us to use it for analytical chemistry by correlating the concentrations of a sample with the impedance of the photoresistor, which is measured with a multimeter. This prototype presents determination coefficients of 0.9993, 0.9990, 0.9989 and 0.9961, respectively for solutions of copper sulfate, potassium permanganate, egg yellow pigment and collagen, these measurements allow us to apply Lambert-Beer law for spectrophotometry.
Keywords
Downloads
License
Copyright (c) 2023 Larry Ramos Paredes, Juan Rafael Charca Benavente, Manuel Isidro Veleto Sapacayo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).
Reconocimiento-NoComercial
CC BY-NC
References
Asheim J., Kvittingen E. V., Kvittingen L., Verley R. (2014) A simple, small-scale Lego colorimeter with a light-emitting diode (LED) used as detector. Journal of Chemical Education, 91(7), 1037-1039. https://doi.org/10.1021/ed400838n
Heredia-Ávalos S. (2009) Cómo construir un espectroscopio casero con un CD. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6(3), 491-495. http://hdl.handle.net/10498/9915
Chng J. K., Patuwo M. Y. (2020) Building a Raspberry Pi Spectrophotometer for Undergraduate Chemistry Classes. Journal of Chemical Education, 98(2), 682-688. https://doi.org/10.1021/acs.jchemed.0c00987
González-Morales D., Valencia A., Díaz-Nuñez A., Fuentes-Estrada M., López-Santos O., García-Beltrán O. (2020) Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors, 20(3), 906. https://doi.org/10.3390/s20030906
Lema M. A., Aljinovic E. M., Lozano M. E. (2002) Using a homemade spectrophotometer in teaching biosciences. Biochemistry and Molecular Biology Education, 30(2), 106-110. https://doi.org/10.1002/bmb.2002.494030020032
Montoya Rossi E., Baltuano Elías Ó., Arbildo López A. (2013) Espectrómetro para radiación visible hecho en casa, de bajo costo y altas prestaciones. Revista de la Sociedad Química del Perú, 79(1), 80-91.
Moreira A. F., Santos S. D., Junior A. C. (2016) Construção e caracterização de um fotômetro destinado ao uso de aulas experimentais de química sobre a lei de Beer-Lambert. Holos, 2, 142-151. https://doi.org/10.15628/holos.2016.4016
Mozo J. D., Galan M., Roldán E. (2001) Application of light emitting diodes to chemical analysis: Determination of copper in water. Journal of Chemical Education, 78(3), 355. https://doi.org/10.1021/ed078p355
Wakabayashi F., Hamada K. (2006) A DVD spectroscope: A simple, high-resolution classroom spectroscope. Journal of Chemical Education, 83(1), 56. https://doi.org/10.1021/ed083p56
Widiatmoko E., Budiman M., Abdullah M. (2011) A simple spectrophotometer using common materials and a digital camera. Physics Education, 46(3), 332. http://iopscience.iop.org/0031-9120/46/3/014