Actividades para desarrollar el conocimiento epistémico y el pensamiento crítico a través de la indagación científica en el laboratorio escolar
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2024.v21.i3.3201Información
Resumen
En este artículo se presenta el diseño de una secuencia de actividades sobre la estructura de la materia y reactividad química en el laboratorio utilizando el enfoque de enseñanza de las prácticas científicas, en particular la práctica de indagación. Se pone especial énfasis en el uso del conocimiento epistémico en esta práctica científica para conseguir que el alumnado aprenda química de forma significativa y coherente con cómo se construye el conocimiento científico, así como en el desarrollo del pensamiento crítico. La secuencia se diseña para ser implementada en la asignatura de Física y Química de 2º de ESO y que el alumnado trabaje en pequeños grupos de 3-4 estudiantes. De la implementación de la propuesta se puede extraer que el uso del conocimiento epistémico es complejo y solo se aprecia cuando se promueve de forma explícita a través de las preguntas incorporadas en el guion de las actividades o a través de intervenciones de la docente.
Palabras clave
Descargas
Licencia
Derechos de autor 2024 Leticia González Rodríguez, Beatriz Crujeiras Pérez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as podrán conservar sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) una vez el manuscrito sea aceptado, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto). También se permite la difusión de la versión pre-print de los artículos a partir del momento en que son aceptados o publicados
Reconocimiento-NoComercial
CC BY-NC
Citas
Barak, M., Ginzburg, T. y Erduran, S. (2024). Nature of Engineering A Cognitive and Epistemic Account with Implications for Engineering Education. Science & Education, 33, 679-697.https://doi.org/10.1007/s11191-022-00402-7
Banchi, H. y Bell, R. (2008). The Many Levels of Inquiry. Science & Children, 46, 26-29.
Berland, L. K., Schwarz, C., Krist, C., Kenyon, L., Lo, A. S. y Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082-1112. http://dx.doi.org/10.1002/tea.21257
Blanco López, A., España Ramos, E., y Franco Mariscal, A. J. (2017). Estrategias didácticas para el desarrollo del pensamiento crítico en el aula de ciencias. Ápice: revista de Educación Científica, 1(1), 107-115. http://dx.doi.org/10.17979/arec.2017.1.1.2004
Casas-Quiroga, L. y Crujeiras-Pérez, B. (2024). Epistemic knowledge considered by secondary school students involved in the examination of a real alimentary emergency. Journal of Biological Education, 58(1),16-28. https://doi.org/10.1080/00219266.2021.2012230
Casas-Quiroga, L. y Crujeiras-Pérez, B. (2022). Trabajando la respuesta ante enfermedades de origen alimentario a través del juego de rol. Enseñanza de las Ciencias, 40(1), 221-241. https://doi.org/10.5565/rev/ensciencias.3327
Chen,Y., Brand, H. y Park, S. (2016). Examining Elementary Students’ Development of Oral and Written Argumentation Practices Through Argument-Based Inquiry. Science and Education, 25, 277-320. http://dx.doi.org/10.1007/s11191-016-9811-0
Crujeiras-Pérez, B. y Brocos, P. (2021). Pre-service teachers' use of epistemic criteria in the assessment of scientific procedures for identifying microplastics in beach sand. Chemistry Education Research and Practice, 22, 237-246. https://doi.org/10.1039/D0RP00176G
Crujeiras-Pérez, B. y Díaz-Moreno, N. (2022). Promoting Pre-Service Primary Teachers’ Development of NOSI Through Specific Immersion and Reflection. EURASIA Journal of
Mathematics, Science and Technology Education, 18(3). https://doi.org/10.29333/ejmste/11795
Cunningham, C. M. y Kelly, G. J. (2017). Epistemic practices of engineering for Education. Science Education, 101, 486-505. http://dx.doi.org/10.1002/sce.21271
Duschl, R. A. (1990). Restructuring Science Education: The importance of theories and their development. Teachers College Press.
Duschl, R. A. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32, 268–291. http://dx.doi.org/10.3102/0091732X07309371
Elby, A., Macrander, C. y Hammer, D. (2016). Epistemic cognition in science. En J. Green,W. A. Sandoval e I. Braaten. Handbook of Epistemic Cognition (pp.113-127). Routledge.
English, L. D. (2020). Facilitating STEM integration through design. En J. Anderson y Y. Li (Eds.). Integrated approaches to STEM education: an international perspective. (pp. 45-66). Springer.
Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment & Instruction: The Delphi Report. California Academic Press.
García Carmona, A. (2022). La comprensión de aspectos epistémicos de la naturaleza de la ciencia en el nuevo currículo de Educación Secundaria Obligatoria, tras la LOMLOE. Revista Española de Pedagogía, 283, 433-450.
Georgia Department of Education (2016). K-12 Georgia Standards of Excellence (GSE) for Science.
González Rodríguez, L. y Crujeiras-Pérez, B. (2016). Aprendizaje de las reacciones químicas a través de actividades de indagación en el laboratorio sobre cuestiones de la vida cotidiana. Enseñanza de las Ciencias, 34(3),143-160. https://doi.org/10.5565/rev/ensciencias.2018
Jiménez-Aleixandre, M. P. y Puig, B. (2022). Educating critical citizens to face post- truth: the time is now. En B. Puig y M. P. Jiménez-Aleixandre (Eds.). Critical thinking in Biology and Environmental Education. Facing challenges in a post- truth world. Springer.
Kangas, K. y Seitamaa-Hakkarainen, P. (2018). Collaborative design work in technology education. En M. J. de Vries (Ed.), Handbook of technology education (pp. 597–609). Springer.
Kelly, G. J. (2008). Inquiry, activity and epistemic practice. En R. A. Duschl y R. E. Grandy (Eds.). Teaching Scientific Inquiry. Sense Publishers, pp.99-117. http://dx.doi.org/10.1163/9789460911453_009
Kelly, G. J., McDonald, S. y Wickman, P-O. (2012). Science Learning and Epistemology. En B. J. Fraser, K. G. Tobin, y C. J. McRobbie (Eds.). Second International Handbook of Science Education
(Volume 1, pp. 281-291). Springer. http://dx.doi.org/10.1007/978-1-4020-9041-7_20
Kite, V., Park, S., McCance, K. y Seung, E. (2021). Secondary Science Teachers’ Understandings of the Epistemic Nature of Science Practices. Journal of Science Teacher Education, 32, 243-264.
National Research Council (NRC) (2013). Next generation science standards: For states, by states. The National Academies Press.
National Research Council (NRC) (2012). A framework for K12 Science Education: practices, crosscutting concepts and core ideas. National Academy Press.
National Research Council (NRC) (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academies Press.
Norris, S. P. y Ennis, R. H. (1989). Evaluating critical thinking. Critical Thinking Press & Software.
Organisation for Economic and Cooperative Development (OECD) (2016). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy. OECD Publishing.
Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria, BOE, núm 76, de 30 de marzo de 2022.
Ryu, S. y Sandoval, W. A. (2012). Improvements to Elementary Children’s Epistemic Understanding From Sustained Argumentation. Science Education, 96, 488-526. http://dx.doi.org/10.1002/sce.21006
Sandoval, W., Bell, P., Coleman, E., Enyedy, N. y Suthers, D. (2000). Designing Knowledge Representations for Learning Epistemic Practices of Science, Comunicación presentada en el congreso Annual Meeting of the American Educational Research Association, New Orleans, 25 de
abril.
Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656. http://dx.doi.org/10.1002/sce.20065
Sandoval, W. A. (2014). Science education’s need for a theory of epistemological development, Science Education, 98(3), 383–387. http://dx.doi.org/10.1002/sce.21107
Sandoval, W. A. y Reiser, B. J. (2004), Explanation-driven inquiry: integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345-372.