Artificial intelligence as a tool in generative art applied in artistic education experiences
Downloads
- PDF (Español (España)) 321
- EPUB (Español (España)) 91
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 39
DOI
https://doi.org/10.25267/Hachetetepe.2025.i30.1204Info
Abstract
In the current educational landscape, technological innovations arising with artificial intelligence enable educational resources that promote collaborative creativity based on expanded digital culture and generative art models. As an introductory framework we break down the development of different AI-based art models. This article aims to provide a glimpse into the applicability and validity of the use of generative AI models in an experience designed and implemented in the undergraduate degree in art education. The research design uses a quantitative methodology with dichotomous surveys to reflect on how AI is a valid educational resource to implement in the classroom. The technique used was with expository classes and the evaluation method was with a portfolio. The results show an experience carried out in undergraduate studies in early childhood education on the creation of images based on the covers of children's illustrated albums. The objective was to encourage collaborative creation processes, giving value and giving priority not to a final art product but based on the process and co-creation in groups. We concluded that AI is a favorable tool that provides creative skills and enables the creation of educational materials.
Keywords
Downloads
How to Cite
License
Copyright (c) 2025 Paula Delgado Hernández, Ana María Marqués Ibáñez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have published with this journal, accept the following terms:
- They will retain their copyright and guarantee the journal the right to first publication of their work, which will simultaneously be subject to the Creative Commons Attribution License . They may be copied, used, disseminated, transmitted and publicly displayed, provided that the authorship, url, and magazine are cited, and are not used for commercial purposes. No derivative works are allowed.
- They may adopt other non-exclusive license agreements for the distribution of the published version of the work (e.g., deposit it in an institutional telematic archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Disseminate your work through the Internet (e.g., in institutional telematic archives or on your website) once the manuscript is accepted, which may lead to interesting exchanges and increased citations of the published work. (See The effect of open access).
Hachetetepé. Scientific journal of education and communication does not charge a fee for the submission of manuscripts or for the publication of its articles.
References
Anadol, R. (2022). Living Architecture: Casa Batlló [Instalación]. https://bit.ly/3Gr61DL
Audry, S. (2021). Art in the Age of Machine Learning. MIT Press.
Bae-Dimitriadis, M. (2024). Teaching Visual Culture in the New Digital Mediascape: Generative Artificial Intelligence. Art Education, 77(4), 4-7. https://doi.org/10.1080/00043125.2024.2362119
Baginsky, N. (1992). Aglaopheme: Slide guitar robot. https://bit.ly/4jNrhlA
Beckingham, S., Lawrence, J., Powell, S., y Hartley, P. (2024). Using Generative AI Effectively in Higher Education: Sustainable and Ethical Practices for Learning, Teaching and Assessment. Taylor Francis.
Bentkowska, A., Cashen, T., y Gardiner, H. (Eds.). (2005). Digital Art History. A Subject in Transition. Computers and the History of Art Series, Volume 1. Intellect Books.
BOE-A-2018-16673 Ley Orgánica 3/2018, de 5 de diciembre. (2018). BOE-A-2018-16673 Ley
Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales. https://bit.ly/4itKojp
Bogart, B. D. R., y Pasquier, P. (2013). Context Machines: A Series of Situated and Self-Organizing Artworks. Leonardo, 46(2), 114-122. https://doi.org/10.1162/LEON_a_00525
Bower, J. L., y Christensen, C. M. (1995). Disruptive Technologies: Catching the Wave. Journal of Product Innovation Management, 1, 75-76. https://bit.ly/3S3OmEH
Epstein, Z., Hertzmann, A., Akten, M., Farid, H., Fjeld, J., Frank, M. R., Groh, M., Herman, L., Leach, N., Mahari, R., Pentland, A., Russakovsky, O., Schroeder, H., y Smith, A. (2023). Art and the science of generative AI. Science, 380(6650), 1110-1111. https://doi.org/10.1126/science.adh4451
EUR-Lex. (2024). Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC)
No 300/2008, (EU). https://bit.ly/4m3TTZZ
Freedman, K., Heijnen, E., Kallio-Tavin, M., Kárpáti, A., y Papp, L. (2013). Visual Culture Learning Communities: How and What Students Come to Know in Informal Art Groups. Studies in Art Education, 54(2), 103-115. https://doi.org/10.1080/00393541.2013.11518886
Goodfellow, I., Bengio, Y., y Courville, A. (2016). Deep Learning. Mit Press.
Kirkbride, F., y Crespo, S. (2023). Intertidal samples 1.0. https://bit.ly/3GqyqKb
Kopytkov, G. (2025). Plastic Food Print. Kopytkov Portfolio. https://bit.ly/4cTawDu
Manovich, L. (2002). The Language of New Media. Mit Press.
Manovich, L. (2022). Capriccio [Imagen digital]. https://bit.ly/4lGHmex
Manovich, L. (2023). Drawing Rooms [Imagen digital]. https://bit.ly/3GqVbxA
Manovich, L., y Arielli, E. (2023). AI image and Generative Media: Notes on Ongoing Revolution.
En Artificial Aesthetics: Generative AI, Art, and Visual Media (pp. 1-17). Ekaterina Maslova https://l1nq.com/5Nwir
Marín, R. (2023). Inteligencia Artificial y educación artística, saludo (IA+EA). Universidad de Granada.
Marqués, A., y Delgado, P. (2025). SketchFab: Expresión Plástica. Sketchfab. https://bit.ly/4lLaW2H
Martín, J. (2024). La creación artística visual frente a los retos de la inteligencia artificial. Automatización creativa y cuestionamientos éticos. Eikón / Imago, 13, 1-14.
https://doi.org/10.5209/eiko.90081
Martín, J. (2025). AI-based generative image production systems in the artistic problematisation of the past: The thematisation of memory and temporality in «AI art». AI & SOCIETY. https://doi.org/10.1007/s00146-024-02163-z
Mazzone, M., y Elgammal, A. (2019). Art, Creativity, and the Potential of Artificial Intelligence. En Arts 8(1). https://doi.org/10.3390/arts8010026
Ridler, A. (2021). The Shell Record, 2021 [Fotografía]. https://bit.ly/3YPJRRZ
Ridler, A., y Crespo, S. (2023). Various & Casual Occursions, 2023 [Fotografía]. https://bit.ly/4cKw0SF
Russell, S. J., y Norvig, P. (2021). Artificial Intelligence: A Modern Approach. (4th Edition). Pearson.
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
Schulmuseum, V. A. (2024). VS. The School Museum: Historic school furniture. https://bit.ly/4cL5tVk
Schweda, S. (2025). Objects I. https://bit.ly/3EoJU0l
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, LIX(236), 433-
https://doi.org/10.1093/mind/LIX.236.433
Vartiainen, H., Tedre, M., yJormanainen, I. (2023). Co-creating digital art with generative AI in K-9
education: Socio-material insights. International Journal of Education Through Art, 19(3), 405-423. https://doi.org/10.1386/eta_00143_1
Vygotsky, L. S. (1965). Thought and Language. The MIT Press.
Zielinski, S. (2019). Variations on Media Thinking. University of Minnesota Press.

