Understanding genetics using external representations in everyday school science lessons

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020v17.i3.3101

Info

Fundamentals and current research lines
3101
Published: 01-06-2020
PlumX

Authors

  • Fernando Flores-Camacho (MX) Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior, S/N, Ciudad Universitaria, 04510, Mexico City http://orcid.org/0000-0001-6165-4946
  • Beatriz García-Rivera (MX) Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City. https://orcid.org/0000-0002-8169-6083
  • Leticia Gallegos-Cázares (MX) Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City. http://orcid.org/0000-0002-1485-2867
  • Araceli Báez-Islas (MX) Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City. https://orcid.org/0000-0001-9723-9082
  • Elena Calderón-Canales (MX) Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City. http://orcid.org/0000-0001-9493-0046

Abstract

This work shows the conceptual achievement on genetics of high school student´s when external representations are used as support. Three didactic proposals were applied with the same conceptual frame and number of activities, but different in the organization of activities and in the type and use of representations. A questionnaire was designed, validated and applied to understand the conceptual and representational understanding of the topic. A rubric was built for its qualification and an ANOVA test was applied. The results indicate that the group where the teacher diversified the work dynamics and had more representations got the highest averages, the most complete written explanations and the most accurate precision in their symbolic and graphic representations. The three proposals improved student´s conceptual understanding but, that where was a different group organization, which allowed a greater variety of tasks and the use of more representations in class activities, favored a better conceptual understanding on the subthemes of somatic cells, sexual cells, inheritance mechanisms and genetic alterations.

Keywords


Downloads

Download data is not yet available.

References

Banet, E., Ayuso, E. (2000) Teaching Genetics at Secondary School: A Strategy for Teaching about the Location of Inheritance Information. Science Education 84, 313–351.

Caballero, M. (2008) Algunas ideas del alumnado de secundaria sobre conceptos básicos de genética. Enseñanza de las Ciencias 26(2), 227–243.

Clément, P., Castéra J. (2013) Multiple Representations of Human Genetics in Biology Textbooks. En D.F. Treagust y C-Y. Tsui (Eds.), Multiple Representations in Biological Education (pp. 147–164). Dordrech: Springer.

Diez de Tancredi, D., Caballero, C. (2004) Representaciones externas de los conceptos biológicos de gen y cromosoma. Su aprendizaje significativo. Revista de Investigación 56, 91–121.

diSessa, A. (2002) Why "conceptual ecology" Is a good idea. En M. Limón y L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice (pp. 29–60). Dordrecht: Kluwer Academic Publishers.

Eilam, B. (2013) Possible Constraints of Visualization in Biology: Challenges in Learning with Multiple Representations. En D. F. Treagust y C-Y. Tsui (Eds.), Multiple Representations in Biological Education (pp.147–164). Dordrech: Springer.

Escuela Nacional Preparatoria [ENP]. (1996) Programa de estudios de la asignatura de Biología V. Universidad Nacional Autónoma de México. Distrito Federal, México. Fecha de consulta: 15-enero-2018. Disponible en: <http://dgenp.unam.mx/planesdeestudio/sexto/1613.pdf>

Figini, E., De Micheli, A. (2005) La enseñanza de la genética en el nivel medio y la educación polimodal: contenidos conceptuales en las actividades de los libros de texto. Enseñanza de las Ciencias núm. extra, 1–5.

Flores, F. (2004). El cambio conceptual: interpretaciones, transformaciones y perspectivas. Educación Química, de aniversario 15(3), 60-73.

Flores-Camacho, F., García-Rivera, B., Báez-Islas, A., Gallegos-Cázares, L. (2017) Diseño y validación de un instrumento para analizar las representaciones externas de estudiantes de bachillerato sobre genética. Revista Iberoamericana de Evaluación Educativa 10(2), 151-169.

Freidenreich, H., Duncan, R., Shea, N. (2011) Exploring middle school students´ understanding of three conceptual models in genetics. International Journal of Science Education 33(17), 2323–2349. doi:10.1080/09500693.2010.536997

Garófalo, S., Chemes, L., Alonso, M. (2016) Propuesta didáctica de enseñanza con simulaciones para estudiantes del profesorado en Ciencias Biológicas. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 13(2), 359–372.

Garvin, W., Stefani, L. (1993) Genetics-genetic disorder and diagnosis: a role-play exercise. Journal of Biological Education 27(l), 51–57. doi:10.1080/00219266.1993.9655304

Gilbert, J. (2008) Visualization: an emergent field of practice and enquiry in science education. En J. K., Gilbert, M. Reiner y M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp.3–24). Amsterdam: Springer.

Gericke, N., Wahlberg, S. (2013) Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students understanding. Journal of biological education 47(2), 73–83. doi:10.1080/00219266.2012.716785

Horwitz, P., Neumann, E., Schwartz, J. (1996) Teaching science at multiple space-time scales. Communications of the ACM 39(8), 100–102.

Ibáñez, M. Martínez Aznar, M. (2005) Solving problems in genetics (II): Conceptual restructuring. International Journal of Science Education 27(12), 1495–1519.

Iñiguez, J. (2005) La enseñanza de la genética, una propuesta didáctica para la educación secundaria obligatoria desde una perspectiva constructivista. Tesis doctoral. Universidad de Barcelona, Barcelona.

Kapteijn, M. (1990) The function of organizational levels in biology for describing and planning biology education. En P. L. Lijnse, P. Licht, W. de Vos y A. J. Vaarlo (Eds.), Relating macroscopic phenomena to microscopic particles

(pp. 139–150). Utrecht, The Netherlands: CD‐Press.

Knippels, M. (2002) Coping with the abstract and complex nature of genetics in biology education. The yo-yo learning and teaching strategy. Utrecht, Netherlands: CD-β Press. Fecha de consulta: 11-oct-2018. Disponible en: <https://dspace.library.uu.nl/bitstream/handle/1874/219/full.pdf>

Kozma, R., Russell, J. (2005) Students becoming chemists: developing representational competence. En J. Gilbert (Ed.), Visualization in Science Education (pp. 121–146). Amsterdam: Springer.

Lee, H-S., Liu, O, L., Linn, M. (2011) Validating measurement of knowledge integration in science using multiple-choice and explanation items. Applied Measurement in Education 24(2), 115–136. doi:10.1080/08957347.2011.554604

Lewis, J., Leach J., Wood-Robinson, C. (2000) All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education 34(2), 74–79. doi:10.1080/00219266.2000.9655689

Marbach-Ad, G., Stavy, R. (2000) Student’s cellular and molecular explanations of genetic phenomena. Journal of Biological Education 34(4), 200–210. doi:10.1080/00219266.2000.9655718

Martí, E., Pozo, J. (2000) Beyond mental representations: The acquisition of external systems of representation. Infancia y Aprendizaje 23(90), 11–30. doi:10.1174/021037000760087946

Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura [UNESCO]. (2000) La ciencia para el siglo XXI. Un nuevo compromiso. UNESCO: París.

Prain, V., Tytler, R. (2012) Learning through constructing representation in science: A framework or representational construction affordances. International Journal of Science Education 34(17), 2751–2773. doi:10.1080/09500693.2011.626462

Prain, V., Tytler, R. (2013). Representing and learning in science. En R. Tytler, V. Prain, P. Hubber y B. Waldrip (Eds.), Constructing representations to learn in science (pp. 1–14). Rotterdam: Sense Publishers.

Rotbain, Y., Stavy, R., Marbach-Ad, G. (2008) The Effect of Different Molecular Models on High School Students’ Conceptions of Molecular Genetics. Science Education Review 7(2), 54–69.

Schneider, E., Della, L., Bologna, A., Benetti, T., Andrade, A., Meglhioratti, A. (2011) Conceitos de gene: construção histórico-epistemológica e percepções de professores do ensino superior. Investigações em Ensino de Ciências 16(2), 201–222.

Schnotz, W., Bannert, M. (2003) Construction and interference in learning from multiple representation. Learning and Instruction 13, 141–156.

Schonborn, K., Bogeholz, S. (2013) Experts’ Views on Translation Across Multiple External Representations in Acquiring Biological Knowledge About Ecology, Genetics, and Evolution. En D. F. Treagust y C-Y. Tsui (Eds.), Multiple Representations in Biological Education (pp.147–164). Dordrecht: Springer.

Stewart, J., Cartier, J., Passmore, C. (2005) Developing understanding through model-based inquiry. En M. S. Donovan, y J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 515–565). Washington, DC: The National Academic Press.

Tsui, C-Y., Treagust, D. (2013) Secondary Students´ Understanding of Genetics Using BioLogica: Two Case Studies. En D. Treagust y C-Y. Tsui (Eds.), Multiple Representations in Biological Education (pp. 269–292). Dordrecht: Springer

Venville, G., Donovan, J. (2007) Developing year 2 students' theory of biology with concepts of the gene and DNA. International Journal of Science Education 29, 1111–1131. doi:10.1080/09500690600931079

Wilson, M. (2005) Constructing measures: An item response modeling approach. Mahwah, NJ: Lawrence Erlbaum Associates.

Wu, H., Puntambekar, S. (2012) Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology 21(6), 754–767. doi:10.1007/s10956-011-9363-7