Desafíos en la conceptualización y medición de la identidad científica: validación del cuestionario de identidad científica

Información

Fundamentos y líneas de trabajo
1105
Publicado: 12-01-2026

Autores/as

Resumen

La investigación sobre la identidad científica adolece de una conceptualización y medición consensuadas. El presente estudio valida la versión en español del Cuestionario de Identidad Científica en una muestra de estudiantes de secundaria (N = 498). Los resultados obtenidos no corroboran el modelo original de cuatro factores ni otras propuestas teóricas de la literatura. En su lugar, se propone un modelo de dos factores compuesto por los constructos de “desempeño/competencia autopercibidos” y “reconocimiento”, con evidencias psicométricas robustas en términos de validez estructural, convergente, discriminante y concurrente, así como una alta fiabilidad interna y test-retest. Se discuten las discrepancias observadas, revelando problemas metodológicos en estudios previos que podrían haber contribuido a la proliferación de múltiples dimensiones sin sustento teórico bajo el constructo de identidad científica. Los resultados subrayan falta de consenso en la conceptualización de la identidad científica y necesidad de mayor rigor metodológico en su evaluación, además de aportar un instrumento válido y confiable para la medición de este importante constructo en población de habla hispana.

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Agencias de apoyo  

Este trabajo ha sido posible gracias al apoyo de la Agencia Estatal de Investigación (AEI) de España a través de los proyectos PID2020-117348RB-I00 y PID2021-126416NB-I00

Cómo citar

Toma, R. B., Muñoz Dominguez, A. I., & Sánchez Gómez, P. J. (2026). Desafíos en la conceptualización y medición de la identidad científica: validación del cuestionario de identidad científica. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 23(1), 1105. Recuperado a partir de https://revistas.uca.es/index.php/eureka/article/view/11973

Biografía del autor/a

Radu Bogdan Toma, Universidad de Burgos

Universidad de Burgos, Facultad de Educación.

Departamento de Didácticas Específicas, Área de Didáctica de las Ciencias Experimentales

Citas

American Educational Research Association [AERA], American Psychological Association [APA] y National Council on Measurement in Education [NCME]. (2014). Standards for Educational and Psychological Testing.

Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B. y Wong, B. (2010). “Doing” science ver-sus ‘being’ a scientist: examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Science Education, 94(4), 617–639. https://doi.org/10.1002/sce.20399

Aschbacher, P. R., Li, E. y Roth, E. J. (2010). Is science me? High school students' identities, par-ticipation, and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582. https://doi.org/10.1002/tea.20353

Bandura A., (1997). Self-efficacy: The exercise of control. New York, NY: Worth Publishers.

Barton, A. C. y Tan, E. (2010). We Be Burnin’! Agency, Identity, and Science Learning. Journal of the Learning Sciences, 19(2), 187–229. https://doi.org/10.1080/10508400903530044

Beaton, D. E., Bombardier, C., Guillemin, F. y Ferraz, M. B. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014

Brown, B., Reveles, J.M. y Kelly, G.J. (2005). Scientific literacy and discursive identity: A theo-retical framework for understanding science learning. Science Education, 89, 779–802. https://doi.org/10.1002/sce.20069

Brown, T. A. (2015). Confirmatory factor analysis for applied research. The Guilford Press.

Carlone, H. B. y Johnson, A. (2007). Understanding the science experiences of women of color: Science identity as an analytic lens. Journal of Research in Science Teaching, 44(8), 1187-1218. https://doi.org/10.1002/tea.20237

Chang, M. J., Eagan M. K., Lin M. H. y Hurtado S., (2011). Considering the impact of racial stigmas and science identity: Persistence among biomedical and behavioral science aspir-ants. The Journal of Higher Education, 82(5) 564–596. https://doi.org/10.1080/00221546.2011.11777218

Chemers, M. M., Zurbriggen E. L., Syed M., Goza B. K. y Bearman S. (2011). The role of effica-cy and identity in science career commitment among underrepresented minority students. Journal of Social Issues, 67(3), 469–491. https://doi.org/10.1111/j.1540-4560.2011.01710.x

Chen, S. y Wei, B. (2022). Development and validation of an instrument to measure high school students’ science identity in science learning. Research in Science Education, 52, 111–126. https://doi.org/10.1007/s11165-020-09932-y

Dongyao, T. y Yukiko, M. (2021) Perceptions of science teachers’ growth-mindset practices and U.S. high school students’ initial science identity and its development, International Jour-nal of Science Education, 43(13), 2206-2225. https://doi.org/10.1080/09500693.2021.1958021

Eccles, J. S. y Wigfield, A. (2023). Expectancy-value theory to situated expectancy-value theory: Reflections on the legacy of 40+ years of working together. Motivation Science, 9(1), 1-12. https://doi.org/10.1037/mot0000275

Estrada, M., Woodcock A., Hernandez P. R. y Schultz P. W., (2011). Toward a model of social influence that explains minority student integration into the scientific community, Journal of Educational Psychology, 103(1) 206-222. https://doi.org/10.1037/a0020743

Estrada, M., Hernandez P. R. y Schultz P. W., (2018). A longitudinal study of how quality men-torship and research experience integrate underrepresented minorities into STEM careers, CBE Life Sciences Education, 17(1), 1-13. https://doi.org/10.1187/cbe.17-04-0066

Ferrando, P. J., Lorenzo-Seva, U., Hernández-Dorado, A. y Muñiz, J. (2022). Decálogo para el análisis factorial de los ítems de un test. Psicothema, 34(1), 7–17. https://doi.org/10.7334/psicothema2021.456

Fernández-Huerta, J. (1959). Medidas sencillas de lecturabilidad. Consigna, 214, 29–32.

Fischer, R. y Karl, J. A. (2019). A primer to (cross-cultural) multi-group invariance testing possi-bilities in R. Frontiers in Psychology, 10, 1507. https://doi.org/10.3389/fpsyg.2019.01507

Gee, J. P. (2000). Identity as an analytic lens for research in education. Review of Research in Edu-cation, 25, 99-125. https://doi.org/10.2307/1167322

Godwin A., Potvin G., Hazari Z. y Lock R. M., (2016). Identity, critical agency, and engineering: An affective model for predicting engineering as a career choice. Journal of Engineering Education, 105(2), 312–340. https://doi.org/10.1002/jee.20118

Grimalt‐Álvaro, C., Couso, D., Boixadera‐Planas, E. y Godec, S. (2022). “I see myself as a STEM person”: Exploring high school students’ self‐identification with STEM. Journal of Re-search in Science Teaching, 59(5), 720–745. https://doi.org/10.1002/tea.21742

Hair, J. F., Hult, G. T. M., Ringle, C. M. y Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Inc.

Harrington, D. (2009). Confirmatory factor analysis. Oxford University Press.

Hayes, A. F. y Coutts, J. J. (2020). Use Omega rather than Cronbach’s Alpha for estimating relia-bility. But…. Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629

Hazari Z., Sonnert G., Sadler P. M. y Shanahan M. C., (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. Journal of Research in Science Teaching, 47(8), 978–1003. https://doi.org/10.1002/tea.20363

Hazari, Z., Sadler, P. M. y Sonnert, G. (2013). The science identity of college students: exploring the intersection of gender, race, and ethnicity. Journal of College Science Teaching, 42(5), 82-91.

Hazari, Z., Chari, D., Potvin, G. y Brewe, E. (2020). The context dependence of physics identity: Examining the role of performance/competence, recognition, interest, and sense of belong-ing for lower and upper female physics undergraduates. Journal of Research in Science Teaching, 57(10), 1583–1607. https://doi.org/10.1002/tea.21644

Hosbein, K.N. y Barbera, J. (2020a). Alignment of theoretically grounded constructs for the meas-urement of science and chemistry identity. Chemistry Education Research and Practice, 21, 371-386. https://doi.org/10.1039/C9RP00193J

Hosbein, K.N. y Barbera, J. (2020b). Development and evaluation of novel science and chemistry identity measures. Chemistry Education Research and Practice, 21(3), 852-877. https://doi.org/10.1039/C9RP00223E

Jones, M. G., Howe, A. y Rua, M. J. (2000). Gender differences in students' experiences, inter-ests, and attitudes toward science and scientists. Science Education, 84(2), 180–192.

Jöreskog, K. G. y Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70 (351), 631–639. https://doi.org/10.1080/01621459.1975.10482485

Jöreskog, K. G. (1993). Testing Structural Equation Models. En: K. A. Bollen y J. S. Long (Eds.), Testing Structural Equation Models (pp. 294-316). Thousand Oaks, CA: Sage.

Koo, T. K. y Li, M. Y. (2016). A guideline of selecting and reporting Intraclass Correlation Coeffi-cients for reliability research. Journal of Chiropractic Medicine, 15, 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Lent, R.W., Brown, S.D. y Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Vocational Behavior, 45, 79–122.

Marsh, H. W., Hau, K. T. y Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling: A multidisciplinary jour-nal, 11(3), 320–341. https://doi.org/10.1207/s15328007sem1103_2

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.

Navarro, M., Förster, C., González, C. y González-Pose, P. (2016). Attitudes toward science: Measurement and psychometric properties of the test of science-related attitudes for its use in Spanish speaking classrooms. International Journal of Science Education, 38(9), 1459-1482. https://doi.org/10.1080/09500693.2016.1195521

Patil, V. H., Singh, S. N., Mishra, S. y Todd Donavan, D. (2008). Efficient theory development and factor retention criteria: Abandon the “eigenvalue greater than one” criterion. Journal of Business Research, 61(2), 162–170. https://doi.org/10.1016/j.jbusres.2007.05.008

Rhemtulla, M., Brosseau-Liard, P. É. y Savalei, V. (2012). When can categorical variables be treat-ed as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17(3), 354–373. https://doi.org/10.1037/a0029315

Rosseel y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. https://doi.org/10.18637/jss.v048.i02

Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment struc-tures. En R. D. H. Heijmans, D. S. G. Pollock y A. Satorra (Eds.), Innovations in Multi-variate Statistical Analysis: A Festschrift for Heinz Neudecker (pp. 233–247). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-4603-0

Stets, J.E. y Burke, P.J. (2000) Identity Theory and Social Identity Theory. Social Psychology Quarterly, 63, 224-237. https://doi.org/10.2307/2695870

Tan, E., Calabrese Barton, A., Kang, H. y O'Neill, T. (2013). Desiring a career in STEM-related fields: How middle school girls articulate and negotiate identities-in-practice in science. Journal of Research in Science Teaching, 50(10), 1143–1179. https://doi.org/10.1002/tea.21123

Toma, R. B. (2020). Revisión sistemática de instrumentos de actitudes hacia la ciencia (2004-2016). Enseñanza de las ciencias, 38(3), 143–159. https://doi.org/10.5565/rev/ensciencias.2854

Toma, R. B. y Lederman, N. G. (2022). A comprehensive review of instruments measuring atti-tudes toward science. Research in Science Education, 52, 567–582. https://doi.org/10.1007/s11165-020-09967-1

Trujillo, G. y Tanner, K. D. (2014). Considering the Role of Affect in Learning: Monitoring Stu-dents’ Self-Efficacy, Sense of Belonging, and Science Identity. CBE—Life Sciences Educa-tion Vol. 13, 6–15. https://doi.org/10.1187/cbe.13-12-0241

Vincent-Ruz, P. y Schunn, C.D. (2018). The nature of science identity and its role as the driver of student choices. International Journal of STEM education, 5, 1-12. https://doi.org/10.1186/s40594-018-0140-5

Whittaker, T. A. (2011). Using the Modification Index and Standardized Expected Parameter Change for Model Modification. The Journal of Experimental Education, 80(1), 26–44. https://doi.org/10.1080/00220973.2010.531299