La contaminación de los recursos hídricos como punto de partida para el activismo socio-científico

Descargas

Visitas a la página del resumen del artículo:  974  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i1.1502

Información

Educación científica y sostenibilidad
1502
Publicado: 13-12-2018
PlumX

Autores/as

Resumen

Resumen: Los currículos de ciencias destacan la necesidad de implicar al alumnado en temas de la sociedad civil relacionados con las ciencias, al poner en evidencia la primacía de los aprendizajes sobre la relación ciencias-tecnología-sociedad-ambiente. Este trabajo tiene como objetivo conocer los aprendizajes de los alumnos cuando se involucran en el intento de solución de la problemática relacionada con la contaminación del riachuelo aledaño a su escuela. La metodología de investigación es cualitativa, de orientación interpretativa y basada en la observación participante. Participan 21 alumnos de dos clases de 8.º nivel 1 con un currículo alternativo que viven en un medio rural del sudoeste portugués. Los datos se recogieron a través del diario del profesor, documentos escritos y entrevistas a los alumnos (realizadas al final del estudio). Los resultados revelan que las vivencias positivas proporcionadas por el club de radio les dotaron de confianza y les incentivaron al activismo comunitario relacionado con la contaminación del riachuelo local. Este activismo se concreta a través de un teatro de fantoches sobre el tratamiento de las aguas residuales. Asimismo, los resultados nos muestran que el activismo conduce a los alumnos a la identificación de los temas de ciencias y de tecnología que están en la base de la contaminación del riachuelo, ampliando su conocimiento sobre el problema y discutiendo diferentes perspectivas para su solución. Además, los jóvenes reconocen que el conocimiento les permite informar a otros miembros de la comunidad y se dan cuenta de que tienen el derecho de implicarse en cuestiones socio-científicas que afecten su calidad de vida.

Palabras clave: Cuestiones socio-científicas; Problemáticas socioambientales en el aula; Alfabetización científica; Educación en ciencias.

Hidric resources pollution as a trigger for socio-scientific activim

Abstract: Science curricula emphasize the need to involve pupils in issues related with society, promoting the science-technology-society-environment perspective. The present study aims at understanding pupils’ learning when they were involved in the problem related with the pollution of a creek near their school. In this study, a qualitative and interpretive methodology was used, based in participant observation. Participants are 21 pupils, who attend the 8th grade of an alternative curriculum. The school belongs to a rural area in the Southwest of Portugal. Data were collected through field notes, written documents and pupils’ interviews (performed at the end of the study). The results show that the positive experiences provided by the radio club gave pupils confidence and encouraged them to activism related with the pollution of the local creek. This activism is concretized through a theater, raising awareness the community and local authority to the treatment of wastewater. In addition, the results show that activism allows pupils to indentify the scientific and technological concepts which are in the base of the pollution of the creek, expanding their knowledge related with the problem and discussing different perspectives for the solution. In addition, pupils recognize that is important to provide with knowledge the other members of the community and realize that they have the right to engage in socio-scientific issues, that affects their quality of life.

Keywords: Collective activism on socio-scientific issues; Socio-scientific issues in the classroom; Scientific literacy; Science education.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Teresa Conceição, Instituto de Educação, Universidad de Lisboa

Departamento de didática das ciências, PhD student.

Mónica Baptista, Instituto de Educação, Universidad de Lisboa

Departamento de didática das ciências, professor.

Pedro Reis, Instituto de Educação, Universidad de Lisboa

Departamento de didática das ciências, professor.

Citas

Aikenhead G. (2011) Towards a cultural view on quality science teaching. In D. Corrigan, J. Dillon, y R. Gunstone (Eds.) The Professional Knowledge Base of Science Teaching. Springer, Dordrecht. DOI.org/10.1007/978-90-481-3927-9_7

Alsop, S. y Bencze, L. (Eds.). Activism in science and technology education. London: Springer.

Apotheker, J., Blonder, R., Akaygun, S., Reis, P., Kampschulte, L. y Laherto, A. (2017). Responsible Research and Innovation in secondary school science classrooms: experiences from the project Irresistible. Pure and Applied Chemistry, 89(2), 211-219.

Baptista, M., Reis, P. y Andrade, V. (2018). Let’s save the bees! An environmental activism initiative in elementary school. Visions for Sustainability, 9, 41-48.

Bogdan, R., y Biklen, S. (1994). Investigação qualitativa em educação: Uma introdução à teoria e aos métodos. Porto: Porto Editora.

Blatt, E. (2013). Local tree mapping: A collaborative, place-based activity integrating science, technology, math, and geography. Science Activities: Classroom Projects and Curriculum Ideas, 50(3), 99–109. doi:10.1080/00368121.2013.808165.

Bybee. R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Colucci-Gray, L., y Camino, E. (2014). From Knowledge to Action? Re-embedding Science Learning Within the Planet’s Web. In S. Alsop & L. Bencze (Eds.), Activism in science and technology education (pp. 149-164). London: Springer.

Dawson, V. (2011). A case study of the impact ofi Socio-scientific issues into a reproduction unit in a catholic girls’ school. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 313-346). London: Springer.

Driver, R., Leach, J., Millar, R., y Scott, P. (1996). Young people's images of science. Buckingham: Open University Press.

Eastwood, J., Schlegel, W., y Cook, K. (2011). Effects of an interdisciplinary program on students’ reasoning with socioscientific issues and perceptions of their learning experiences. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 89-126). London: Springer.

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittroch (Ed.), Handbook of research on teaching. New York, NY: Macmillan.

Evagorou, M. (2011). Discussing a socioscientific issue in a primary school classroom: The case of using a technology-supported environment in formal and nonformal settings. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 133-160). London: Springer.

Freire, S., Faria, C., Galvão, C. y Reis, P. (2013). New curricular material for science classes: how do students evaluate it? Research in Science Education, 43, 163-178.

Goldstein, D. (2017). Fukushima in Brazil: undone science, technophilia, epistemic murk. Culture, Theory and Critique, 1-22. DOI: 10.1080/14735784.2017. 1357480

Gray, D., Colucci-Gray, L. y Camino, E. (Eds) (2009). Science, society and sustainability: Education and empowerment for an uncertain world. London: Routledge Research.

Hodson, D. (2011). Looking to the future. Building a curriculum for social activism. The Netherlands: Sense Publishers.

Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socio-scientific issues. Science Education, 85, 291–310.

Linhares, E. y Reis, P. (2014). La promotion de l'activism chez les futurs enseignants partant de discussion de questions socialement vives. Revue Francophone du Dévelopment Durable, 4, 80-93.

Little, P. (2009). Negotiating community engagement and science in the federal environmental public health sector. Medical Anthropology Quarterly, 23(2), 94–118. DOI: 10.1111/j.1548-1387.2009.01049.x

Marques, A. R., y Reis, P. (2017). Producción y difusión de vídeos digitales sobre contaminación ambiental. Estudio de caso: Activismo colectivo basado en la investigación. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 14(1), 215-226. Disponível em http://hdl.handle.net/10498/18857

Millar, R. y Hunt, A. (2002). Science for public understanding: A different way to teach and learn science. School science review, 83(304), 35–42.

NRC (2010). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on science education, division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

NGSS (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

[NAAEE] North American Association for Environmental Education. (2004). Excellence in environmental education: Guidelines for learning (Pre-K-12). Available at http://www.naaee.org/npeee/learner_guidelines.php

Oulton, C., Dillon, J., y Grace, M. (2004). Reconceptualizing the teaching of controversial issues. International Journal of Science Education, 26(4), 411–423.

Osborne, J. y Dillon, J. (2008). Science education in Europe: Critical reflections. A report to the Nuffield Foundation. London: King’s College London.

Puig. B., y Jiménez-Aleixandre, M. P. (2011). Different music to the same score: Teaching about genes, environment, and human performances. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 201-238). London: Springer.

Reis, P. (2014a). Promoting students’ collective socio-scientific activism: Teacher’s perspectives. In S. Alsop & L. Bencze (Eds.), Activism in science and technology education, (pp. 547-574). London: Springer.

Reis P. (2014b). Acción socio-política sobre cuestiones socio-científicas: reconstruyendo la formación docente y el currículo. Uni-Pluri/versidad, 14(2), 16-26. Disponível em: http://aprendeenlinea.udea.edu.co/revistas/index.php/unip

Reis, P. (2013). Da discussão à ação sócio-política sobre controvérsias sócio‑científicas: uma questão de cidadania. Ensino de Ciências e Tecnologia em Revista, 3(1), 1-10.

Reis, P. y Galvão, C. (2004). Socio-scientific controversies and students' conceptions about scientists. International Journal of Science Education, 26(13), 1621-1633.

Schwartz, R.S., Lederman, N., y Crawford, B. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education 88(4), 610-645.

Sadler, T. (2011). Socio-scientific issues-based education: What we know about science education in the context of SSI. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 355-369). London: Springer.

Sadler, T., Klosterman, M., y Topcu, M. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 45-78). London: Springer.

Simon, S., y Amos, R. (2011). Decision making and use of evidence in a socio-scientific problem on air quality. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 167-192). London: Springer.

Stawkowski, M. (2016). “I am a radioactive mutant”: Emergent biological subjectivities at Kazakhstan’s Semipalatinsk nuclear test site. American Ethnologist, 43(1), 144-157. DOI: 10.1111/amet.12269.

Stradling, R. (1985). Controversial issues in the curriculum. Bulletin of Environmental Education, 170, 9–13.

Wong, S., Zeidler, D., y Klosterman, M. (2011). Metalogue: Preconditions and resources for productive socio-scientific issues teaching and learning. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 271-276). London: Springer.

Zeidler, D., Applebaum, S., y Sadler, T. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In T. D. Sadler (Ed.), Socio-scientific Issues in the Classroom, (pp. 277-306). London: Springer.