Advancing in the construction of the nutrition model through contextualization in the phenomenon
Downloads
- PDF (Español (España)) 148
- EPUB (Español (España)) 39
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 39
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i2.2602Info
Abstract
The human nutrition model is one of the most relevant models in Biology, but its understanding presents challenges. For this reason, educators recommend that students engage in modeling practices that include the representation of the model. It has been shown that the level at which a model is expressed is influenced by the context in which that representation is framed. However, it has not yet been thoroughly investigated how performing contextualized representations throughout a modeling sequence contributes to model construction. This study examines what model of human nutrition future early childhood education teachers (FTs) develop when they participate in a modeling sequence that includes creating a phenomenon-contextualized physical model. The written explanations and final drawings of 47 FTs (Cohort 2) were compared with those of 32 FTs (Cohort 1) who had participated in the same sequence but without insisting on the contextualization of the physical models. In addition, the study analyzed how FTs in Cohort 2 incorporated the phenomenon when explaining their physical models. The FTs from Cohort 2 showed a more developed final nutrition model than those from Cohort 1. That is, placing the physical models in a phenomenon-oriented context facilitated a more complete final representation of the model. The phenomenon was primarily introduced during intermediate stages of the explanations, serving as a link between different processes and giving meaning to the whole explanation.
Keywords
Downloads
Supporting Agencies
How to Cite
License
Copyright (c) 2025 Araitz Uskola Ibarluzea, Teresa Zamalloa Echevarría, Ainara Achurra Ahumada

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).

Reconocimiento-NoComercial
CC BY-NC
References
Achurra, A., Zamalloa, T. y Uskola, A. (2023). What happens in your body when you have lactose intolerance? Science Activities, 60(2), 58-65. https://doi.org/10.1080/00368121.2023.2168243
Adúriz-Bravo, A., Gómez, A., Márquez, C. y Sanmartí, N. (2005). La mediación analógica en la ciencia escolar. Propuesta de la “función modelo teórico”. Enseñanza de las Ciencias, número extra VII Congreso, 1-5.
Ainsworth, S., Prain, V. y Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
Aydın, S. (2016). To what extent do Turkish high school students know about their body organs and organ systems? Journal of Human Sciences, 13(1), 1094-1106. https://doi.org/10.14687/ijhs.v13i1.3498
Bahamonde, N. y Gómez, A.A. (2016). Caracterización de modelos de digestión humana a partir de sus representaciones y análisis de su evolución en un grupo de docentes y auxiliares académicos. Enseñanza de las Ciencias, 34(1), 129-147. https://doi.org/10.5565/rev/ensciencias.1748
Bechtel, W. y Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36 (2), 421–441. https://doi.org/10.1016/j.shpsc.2005.03.010
Bielik, T., Krell, M., Zangori, L. y Ben-Zvi Assaraf, O. (2023). Editorial: Investigating complex phenomena: bridging between systems thinking and modeling in science education. Frontiers in Education, 8, 1308241. https://doi.org/10.3389/feduc.2023.1308241
Blanco, A. (2024). Enfoques de enseñanza en la educación científica actual. Contextualización y prácticas científicas. En T. Lupión-Cobos y C. García-Ruiz (Eds.), Indagación científica escolar y educación STEAM (pp.13-29). Graó.
Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson.
Cuthbert, A. J. (2000). Do children have a holistic view of their internal body maps? School Science Review, 82(299), 25-32.
De Andrade, V., Shwartz, Y., Freire, S. y Baptista, M. (2022). Students' mechanistic reasoning in practice: Enabling functions of drawing, gestures and talk. Science Education, 106, 199-225. https://doi.org/10.1002/sce.21685
Dempsey, B. C. y Betz, B. J. (2001). Biological drawing: A scientific tool for learning. The American Biology Teacher, 63, 271-279. https://doi.org/10.2307/4451099
Fančovičova, J. y Prokop, P. (2019). Examining secondary school students’ misconceptions about the human body: Correlations between the methods of drawing and open-ended questions. Journal of Baltic Science Education, 18(4), 549-557. http://dx.doi.org/10.33225/jbse/19.18.549
García, B. y Mateos, A. (2018). Comparación entre la realización de maquetas y la visualización para mejorar la alfabetización visual en anatomía humana en futuros docentes. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 15(3), 3605. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i3.3605
García-Barros, S., Martínez-Losada, C. y Garrido, M. (2011). What do children aged four to seven know about the digestive system and the respiratory system of the human being and of other animals? International Journal of Science Education, 15, 1-28. https://doi.org/10.1080/09500693.2010.541528
Garrido, A. y Couso, D. (2025). The IPM cycle: An instructional tool for promoting students' engagement in modeling practices and construction of models. Journal of Research in Science Teaching, 62, 391-425. https://doi.org/10.1002/tea.21979
Gilbert, J. K. (2005). Visualization in Science Education. Models and Modeling in Science Education. Springer.
Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957-976. https://doi.org/10.1080/09500690600702470
Gilbert, J. K., Boulter, C. J. y Elmer, R. (2000). Positioning models in science education and in design and technology education. En J. K. Gilbert y C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Springer.
Gilbert, J. K. y Justi, R. (2016). Modelling-based teaching in science education. Springer. https://doi.org/10.1007/978-3-319-29039-3
Goldstone, R. L. y Wilensky, U. (2008). Promoting transfer by grounding complex systems principles. Journal of the Learning Sciences, 17 (4), 465-516. https://doi.org/10.1080/10508400802394898
Gómez, V. y Gavidia, V. (2015). Describir y dibujar en ciencias. La importancia del dibujo en las representaciones mentales del alumnado. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(3), 441-455.
Gómez, A. A., Sanmartí, N. y Pujol, R. M. (2007). Fundamentación teórica y diseño de una unidad didáctica para la enseñanza del modelo ser vivo en la escuela primaria. Enseñanza de las Ciencias. Revista de Investigación y Experiencias Didácticas, 25(3), 325-340. https://doi.org/10.5565/rev/ensciencias.3699
Granklint-Enochson, P., Redfors, A., Dempster, E. R. y Tibell, L. A. E. (2015). Ideas about the human body among secondary students in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 19(2), 199-211. https://doi.org/10.1080/10288457.2015.1050804
Heredia, S. C., Furtak, E. M. y Morrison, D. (2016). Exploring the influence of plant and animal item contexts on student response patterns to natural selection multiple choice items. Evolution: Education and Outreach, 9, 10. https://doi.org/10.1186/s12052-016-0061-z
Hmelo-Silver, C. E. y Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15(1), 53-61.
Hmelo-Silver, C. E., Jordan, R., Eberbach, C. y Sinha, S. (2017). Systems learning with a conceptual representation: A quasi-experimental study. Instructional Science, 45, 53-72. https://doi.org/10.1007/s11251-016-9392-y
Hunter, K.H., Rodriguez, J.M.G. y Becker, N.M. (2021). Making sense of sensemaking: Using the sensemaking epistemic game to investigate student discourse during a collaborative gas law activity. Chemistry Education Research and Practice, 22(2), 328-346. https://doi.org/10.1039/d0rp00290a
Hutagol, C.S. y Haarsono, T. (2016). Analysis of students’ misconception on the topic of human excretory system in grade XI SMA Negeri District Medan Kota. Jurnal Pelita Pendidikan, 4(3), 1-9.
Khwaja, C. C. y Saxton, J. (2001). It all depends on the question you ask. Primary Science Review, 68, 13-14. https://eprints.mdx.ac.uk/id/eprint/1864
Landinho, F., Duarte, R. y Talamoni, A. (2022). Da nutrição à digestão: uma proposta contextualizada para o ensino do sistema digestório. Góndola, Enseñanza y Aprendizaje de las Ciencias, 17(3), 607-625. https://doi.org/10.14483/23464712.18937
Lenhard, W. y Lenhard, A. (2016). Computation of effect sizes. Psychometrica. https://doi.org/10.13140/RG.2.2.17823.92329
Lin, C.Y. y Hu, R. (2003). Students' understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529-1544. https://doi.org/10.1080/0950069032000052045
Nuñez, F. y Banet, E. (1997). Students’ conceptual patterns of human nutrition. International Journal of Science Education, 19(5), 509-526. https://doi.org/10.1080/0950069970190502
Odden, T. O. B. y Russ R. S. (2019). Defining sensemaking: Bringing clarity to a fragmented theoretical construct. Science Education, 103(1), 187-205. https://doi.org/10.1002/sce.21452
Oh, P. S. y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648
Osborne, J.F. y Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95, 627-638. https://doi.org/10.1002/sce.20438
Özsevgeç, L. C. (2007). What do Turkish students at different ages know about their internal body parts both visually and verbally? Journal of Turkish Science Education, 4(2). 31-44. https://www.tused.org/index.php/tused/article/view/666
Park, J., Chang, J., Tang, K.-S., Treagust, D.F. y Won, M. (2020). Sequential patterns of students’ drawing in constructing scientific explanations: focusing on the interplay among three levels of pictorial representation. International Journal of Science Education, 42(5), 677-702. https://doi.org/10.1080/09500693.2020.1724351
Passmore, C., Gouvea, J.S. y Giere, R. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. En M. R. Matthews (Ed.), International Handbook of Research in History, Philosophy and Science Teaching (pp. 1171–1202). Springer.
Penner, D. E., Giles, N. D., Lehrer, R. y Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34(2), 125-143.
Penner, D. E., Lehrer, R. y Schauble, L. (1998). From physical models to biomechanics: A design modeling approach. The Journal of the Learning Sciences, 7(3 & 4), 429-449.
Prain, V. y Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773. https://doi.org/10.1080/09500693.2011.626462
Prain, V. y Tytler, R. (2021). Theorising learning in science through integrating multimodal representations. Research in Science Education, 52, 805–817. https://doi.org/10.1007/s11165-021-10025-7
Reiss, M. J. y Tunnicliffe, S. D. (2001). Students’ understandings of human organs and organ systems. Research in Science Education, 31, 383-399.
Reiss, M. J., Tunnicliffe, S. D., Andersen, A. M., Bartoszeck, A., Carvalho, G. S., Chen, S. Y., Jarman, R., Jónsson, S., Manokore, V., Marchenko, N., Mulemwa, J., Novikova, T., Otuka, J., Teppa, S. y Van Roy, W. (2002). An international study of young peoples’ drawings of what is inside themselves. Journal of Biological Education, 36(2), 58-64. https://doi.org/10.1080/00219266.2002.9655802
Rivadulla, J. C. (2013). El desarrollo del curriculum desde la perspectiva del profesorado de educación primaria . [Tesis doctoral, Universidade da Coruña]. Repositorio Universidade Coruña. http://hdl.handle.net/2183/11672
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D. y Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311
Shin, N., Bowers, J., Roderick, S., McIntyre, C., Stephens, A. L., Eidin, E., Krajcik, J. y Damelin, D. (2022). A framework for supporting systems thinking and computational thinking through constructing models. Instructional Science, 50(6), 933-960. http://dx.doi.org/10.1007/s11251-022-09590-9
Sigman, M. (2024). El poder de las palabras. Penguin Random House.
Sirnoorkar, A., Bergeron, P. D. O. y Laverty, J. T. (2023). Sensemaking and scientific modeling: Intertwined processes analyzed in the context of physics problem solving. Physical Review Physics Education Research, 19, Artículo 010118. https://doi.org/10.1103/PhysRevPhysEducRes.19.010118
Snapir, Z., Eberbach, C., Ben-Zvi-Assaraf, O., Hmelo-Silver, C. y Tripto, J. (2017). Characterising the development of the understanding of human body systems in high-school biology students – a longitudinal study. International Journal of Science Education, 39(15), 2092-2127. https://doi.org/10.1080/09500693.2017.1364445
Tytler, R., Prain, V., Aranda, G., Ferguson, J. y Gorur, R. (2020). Drawing to reason and learn in science. Journal of Research in Science Teaching, 57(2), 209–231. https://doi.org/10.1002/tea.21590
Uskola, A., Zamalloa, T. y Achurra, A. (2024). Using multiple strategies in deepening the understanding of the digestive system. Journal of Biological Education, 58(2), 364-382. https://doi.org/10.1080/00219266.2022.2064896
Van Dijk, T.A. (2010). Discurso, conocimiento, poder y política. Hacia un análisis crítico epistémico del discurso. Revista de Investigación Lingüística, 13, 167-215.
Zamalloa, T., Uskola, A. y Achurra, A. (2023). The influence of the context in representing the human nutrition model. Journal of Baltic Science Education, 22(6), 1089-1102. https://doi.org/10.33225/jbse/23.22.1089

