Revisión de experiencias sobre prácticas científicas en secuencias educativas de geología con trabajo de campo

Descargas

Visitas a la página del resumen del artículo:  1075  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2022.v19.i1.1105

Información

Fundamentos y líneas de trabajo
1105
Publicado: 17-11-2021
PlumX

Autores/as

  • Araitz Uskola Ibarluzea (ES) Departamento de Didáctica de las Matemáticas, Ciencias Experimentales y Sociales, Facultad de Educación de Bilbao, Universidad del País Vasco https://orcid.org/0000-0003-0621-3085
  • Nahia Seijas Garzón (ES) Departamento de Didáctica de las Matemáticas, Ciencias Experimentales y Sociales, Facultad de Educación de Bilbao, Universidad del País Vasco https://orcid.org/0000-0002-9922-7963
  • Josu Sanz Alonso (ES) Departamento de Didáctica de las Matemáticas, Ciencias Experimentales y Sociales, Facultad de Educación de Donostia-San Sebastián, Universidad del País Vasco https://orcid.org/0000-0002-1211-1598

Resumen

Para desarrollar la competencia científica, el alumnado tiene que apropiarse de la cultura científica, a través de las prácticas científicas. En la enseñanza de la geología el campo es también un contexto para la enculturación. Se ha estudiado muy poco la interrelación entre prácticas y trabajo de campo. En este trabajo se realiza una revisión de los artículos que incluyen salida de campo, publicados en diez revistas de enseñanza de las ciencias los últimos diez años. Se identificó la mención a operaciones relacionadas con las prácticas científicas en 20 artículos. La argumentación fue identificada en todos los grupos de edad, la indagación prácticamente solo en el ámbito universitario y la modelización apenas tuvo presencia. Se concluye que la salida jugó un papel en el desarrollo de las prácticas más allá de la recogida de datos. Se detectó la ausencia de operaciones fundamentales en las prácticas, por lo que se plantean algunas implicaciones educativas ilustradas con buenas prácticas identificadas.

Palabras clave: Competencia científica; Enseñanza de las ciencias; Prácticas científicas; Revisión sistemática; Trabajo de campo

Scientific practices in geology educational sequences with field work. Review of experiences

Abstract: In order to develop scientific competence, students have to appropriate scientific culture through scientific practices. In geology teaching, the field is also a context for enculturation. The interrelation between practices and fieldwork has been scarcely studied. In this paper a review is made of articles that include field trips, published in ten science teaching journals over the last ten years. Mention of operations related to scientific practices was identified in 20 articles. Argumentation was identified in all age groups, inquiry practically only at university level and modelling was hardly present at all. It is concluded that fieldwork played a role in the development of practices beyond data collection. The absence of fundamental operations in the practices was detected, which leads to raise some educational implications illustrated with identified good practices.

Keywords: Fieldwork; Science education; Scientific literacy; Scientific practices; Systematic review

Palabras clave


Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abolins M. (2014) Undergraduates discovering folds in "flat" strata: An unusual undergraduate geology field methods. Journal of Geoscience Education 62 (2), 264-277.

Aguilera D. (2018) La salida de campo como recurso didáctico para enseñar ciencias. Una revisión sistemática. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 15 (3), 3103/1-3103/17.

Almquist H., Stanley G., Blank L., Hendrix M., Rosenblatt M., Hanfling S., Crews J. (2011) An integrated field-based approach to building teachers’ geoscience skills. Journal of Geoscience Education 59, 31-40.

Apedoe X.S. (2008) Engaging students in inquiry: Tales from an undergraduate geology laboratory-based course. Science Education 92, 631-663.

Ault C.R. (1998) Criteria of excellence for geological inquiry: The necessity of ambiguity. Journal of Research in Science Teaching 35 (2), 189-212.

Balliet R., Riggs E., Maltese A. (2015) Students’ problem solving approaches for developing

geologic models in the field. Journal of Research in Science Teaching 52 (8), 1109–1131.

Bargiela I.M., Puig B., Blanco P. (2018) Las prácticas científicas en infantil. Una aproximación al análisis del currículum y planes de formación del profesorado de Galicia. Enseñanza de las Ciencias 36 (1), 7-23.

Behrendt M., Franklin T. (2014) A review of research on school field trips and their value in education. International Journal of Environmental & Science Education 9, 235-245.

Blanco-Anaya P., Justi R., Díaz de Bustamante J. (2017) Challenges and opportunities in analysing students modelling. International Journal of Science Education 39 (3), 377-402.

Blanco-Ferrera S., Sanz-López J., Domínguez-Cuesta M.J., López-Fernández C., Pando L.A., Martos E. (2019) Transgresiones, regresiones y fósiles. Enseñanza de las Ciencias de la Tierra 27 (1), 18-30.

BMJ (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Research Methods & Reporting 372(n71). https://doi.org/10.1136/bmj.n71

Bowen G.A. (2009) Document analysis as a qualitative research method. Qualitative Research Journal 9 (2), 27-40.

Brown J.S., Collins A., Duguid P. (1989) Situated cognition and the culture of learning. Educational Researcher 18 (1), 32-42.

Carcavilla L., Berrio M.P., Belmonte A., Durán J.J., López-Martínez J. (2010) Geological diffusion among the general public: principles, techniques and methods for the design of written information. Boletín de la Real Sociedad Española de Historia Natural (Sección geológica) 104, 93–110.

Carrier S.J., Tugurian L.P., Thomson M.M. (2013) Elementary science indoors and out: Teachers, time, and testing. Research in Science Education 43, 2059–2083. doi:10.1007/s11165-012-9347-5

Chang S.N., Chiu M.H. (2008) Lakatos’ scientific research programmes as a framework for analysing informal argumentation about socio‐scientific issues. International Journal of Science Education 30 (13), 1753-1773. https://doi.org/10.1080/09500690701534582

COSCE (2011) Informe ENCIENDE. Enseñanza de las Ciencias en la Didáctica escolar para edades tempranas en España. Madrid. http://www.cosce.org/pdf/Informe_ENCIENDE.pdf

Costillo E., Borrachero A.B., Esteban R., Sánchez-Martín J. (2014) Aportaciones de las salidas al medio natural como actividades de enseñanza y de aprendizaje según profesores en formación. Indagatio Didáctica 6, 10-22.

DeWitt J., Storksdieck M. (2008) A short review of school field trips: Key findings from the past and implications for the future. Visitor Studies 11 (2), 181-197. https://doi.org/10.1080/10645570802355562

Domènech J. (2015) Una secuencia didáctica de modelización, indagación y creación del conocimiento científico en torno a la deriva continental y la tectónica de placas. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 12(1), 186-197.

Donaldson T., Fore G.A., Filippelli G.M., Hess J.L. (2020) A systematic review of the literature on situated learning in the geosciences: beyond the classroom. International Journal of Science Education 42 (5), 722-743. https://doi.org/10.1080/09500693.2020.1727060

Egger A. (2019) The field as touchstone. Journal of Geoscience Education 67 (2), 97-99. https://doi.org/10.1080/10899995.2019.1596461

Erduran S., Simon S., Osborne J. (2004) TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education 88 (6), 915-933.

Fedesco H., Cavin D., Henares R. (2020) Field-based Learning in Higher Education. Journal of the Scholarship of Teaching and Learning 20 (1), 65-84.

Ferrés C., Marbá A., Sanmartí N. (2015) Trabajos de indagación de los alumnos: instrumentos de evaluación e identificación de dificultades. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias 12 (1), 22-37.

Frodeman R. (1995) Geological reasoning: geology as an interpretive and historical science. Geological Society of America Bulletin 107 (8), 960-968.

Garrido A. (2016) Modelitzazió i models en la formació inicial de Mestres de primària des de la perspectiva de la pràctica científica (Tesis doctoral). Universitat Autònoma de Barcelona, Bellaterra.

Gilbert J.K., Boulter C.J., Elmer R. (2000) Positioning models in science education and in design and technology education. En J.K. Gilbert y C.J. Boulter (Eds.), Developing models in science education (pp. 3-17). Kluwer Academic Publisher.

Gray K.R., Owens K.D., Steer D.N., McConnell D.A., Knight C.C. (2011) An exploratory study using hands‐on physical models in a large introductory. Earth science classroom: Student attitudes and lessons learned. Electronic Journal of Science Education 12 (2), 1–23. http://ejse.southwestern.edu/article/view/7391

Harlen W. (2014) Helping children’s development of inquiry skills. Inquiry in Primary Science Education 1, 5-19.

Jiménez-Aleixandre M.P. (2010) 10 ideas clave. Competencias en argumentación y uso de pruebas. Graó.

Jiménez-Aleixandre M.P., Crujeiras B. (2017) Epistemic practices and scientific practices in Science education. En K.S. Taber y B. Akpan (Eds.), Science Education. New Directions in Mathematics and Science Education (pp. 69-80). Sense Publishers.

Justi R.S., Gilbert J.K. (2002) Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education 24 (4), 369–387.

Kali Y., Orion N., Eylon B.-S. (2003) Effect of knowledge integration activities on students’ perception of the Earth’s crust as a cyclic system. Journal of Research in Science Teaching

(6), 545–565.

Kelley D.F., Sumrall J.L., Sumral J.B. (2015) Student-designed mapping project as part of a geology field camp. Journal of Geoscience Education 63 (3), 198–209.

Lavie N., Tal T. (2017) Field trips to natural environments: how outdoor educators use the physical environment. Communication and Public Engagement 7, 237-252.

López F. (2002) El análisis de contenido como método de investigación. XXI, Revista de Educación 4, 167-179.

Márquez C., Artés M. (2016) Propuesta de análisis de representaciones sobre el modelo de cambio geológico del alumnado del grado de educación primaria. Enseñanza de las Ciencias de la Tierra 24 (2), 169-181.

Martí J. (2012) Aprender ciencias en la educación primaria. Graó.

Martínez M.B., Gil M.J., de la Gándara M. (2016) Aportación de las experiencias a la construcción de modelos: el suelo como sistema. Enseñanza de las Ciencias de la Tierra 24 (2), 182-189.

Martínez-Peña M.B., Gil-Quílez M.J. (2014) Drawings as a tool for understanding geology in the Environment. Journal of Geoscience Education 62 (4), 701-713.

Míguez-Rodríguez L.J., González C. (2017) La explotación de la pizarra como contexto de aprendizaje para ayudar al alumnado de bachillerato a entender las relaciones entre minería y sociedad. Enseñanza de las Ciencias de la Tierra 25 (2), 203-212.

Mogk D.W., Goodwin C. (2012) Learning in the field: Synthesis of research on thinking and learning in the geosciences. Special Paper of the Geological Society of America 486, 131-163.

Moss E., Cervato C. (2016) Quantifying the level of inquiry in a reformed introductory geology lab course. Journal of Geoscience Education 64, 125–137.

National Research Council (2012) A framework for K-12 Science Education: practices, crosscuttingconcepts and core ideas. National Academy Press. https://doi.org/10.17226/13165

Nebot M.R. (2020) Modelización del relieve kárstico en el laboratorio. Alambique 102, 38-46.

OECD (2019) PISA 2018 Assessment and Analytical Framework. OECD Publishing https://doi.org/10.1787/b25efab8-en

Orion N., Hofstein A. (1994) Factors that influence learning during a scientific field trip in a natural environment. Journal of Research in Science Teaching 31 (10), 1097-1119.

Osborne J. (2014) Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education 25, 177–196.

Osborne J., Dillon J. (2008) Science Education in Europe: Critical Reflections. Nuffield Foundation.

Osborne J.F., Henderson J.B., MacPherson A., Szu E., Wild A., Yao S.Y. (2016) The development and validation of a learning progression for argumentation in science. Journal of Research in

Science Teaching 53 (6), 821-846.

Pedaste M., Mäeots M., Siiman L.A., de Jong T., van Riesen S.A.N., Kamp E.T., …Tsourlidaki E. (2015) Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review 14, 47-61.

Pedrinaci E. (2012) Trabajo de campo y aprendizaje de las ciencias. Alambique 71, 81-89.

Petcovic H.L., Stokes A., Caulkins J.L. (2014) Geoscientists’ perceptions of the value of undergraduate field education. GSA Today 24(7), 4-10.

Rickinson M., Dillon J., Teamey K., Morris M., Choi M.Y., Sanders D., Benefield P. (2004) A review of research on outdoor learning. National Foundation for Educational Research and King’s College.

Ryu S., Sandoval, W. A. (2012) Improvements to elementary children´s epistemic understanding from sustained argumentation. Science Education 96, 488-526.

Sanmartí N., Márquez C. (2012) Enseñar a plantear preguntas investigables. Alambique 70, 27-36.

Schalk H.H., van der Schee J.A., Boersma K.Th. (2013) The development of understanding of evidence in pre-university biology education in the Netherlands. Research in Science Education 43, 551-578.

Schwarz C.V., Reiser B.J., Davis E.A., Kenyon L., Achér A., Fortus D., Shwartz Y., Hug B., Krajcik J. (2009) Developing a learning progression for scientific modeling: making scientific modeling accesible and meaningful for learners. Journal of Research in Science Teaching 46 (6), 632-654.

Soja C.M. (2014) A field-based biomimicry exercise helps students discover connections among biodiversity, form and function, and species conservation during Earth’s sixth extinction. Journal of Geoscience Education 62 (4), 679-690.

Trend R. (2009) Commentary: Fostering students’ argumentation skills in geoscience education. Journal of Geoscience Education 57 (4), 224-232.

van Loon A.J. (2008) Geological education of the future. Earth-Science Reviews 86, 247-254.

Artículos más leídos del mismo autor/a