Influence on self-efficacy of the degree of authenticity of the inquiry carried out in two secondary school science projects

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2021.v18.i2.2101

Info

Fundamentals and current research lines
2101
Published: 23-03-2021
PlumX

Authors

Abstract

Las creencias sobre la propia capacidad para llevar a cabo con éxito una tarea concreta (autoeficacia) influyen en la implicación y la motivación hacia dicha tarea. En las últimas décadas se ha incrementado el foco de atención hacia estas creencias en el área de ciencias no sólo como uno de los predictores más consistentes del desempeño real del alumnado, sino por la existencia de desigualdades sistemáticas en la autoeficacia de chicos y chicas. Aunque el Aprendizaje Basado en Proyectos (ABP) en el aula de ciencias posee diversas características que potencialmente pueden contribuir a la mejoría de la autoeficacia en ciencias del alumnado, las evidencias entre la relación de los elementos de diseño y la mejora de la autoeficacia en ciencias del alumnado han sido poco exploradas. Con la finalidad de ofrecer pautas para el diseño, la investigación que se presenta pretende explorar qué características de la indagación planteada en dos variaciones del proyecto “El congreso científico” pueden promover la mejora en la autoeficacia en las ciencias de los y las estudiantes de 14-15 años participantes en dos centros de secundaria (A y B). Se diseñó un cuestionario que respondieron 60 estudiantes antes y después de su participación en el proyecto (10 chicos y 16 chicas en el Centro A y 23 chicos y 11 chicas en el Centro B). Los resultados muestran que estrategias de indagación que otorgan diferentes grados de autenticidad en la indagación científica escolar no derivan necesariamente en un aumento de la autoeficacia en ciencias a corto plazo. En el artículo se discute la necesidad de incluir otras estrategias complementarias para garantizar que tanto chicas como chicos pueden tener experiencias de indagación científica con éxito real.

Palabras clave: autoeficacia, aprendizaje basada en proyectos, educación secundaria, indagación

Influence on self-efficacy of the degree of authenticity of the inquiry carried out in two secondary school science projects

Abstract: Beliefs about one's ability to successfully carry out a specific task (self-efficacy) influence involvement and motivation towards that task. In recent decades, the focus of attention on these beliefs has increased in the area of science education, not only as one of the most consistent predictors of students’ real performance, but because of the existence of systematic inequalities regarding boys’ and girls’ self-efficacy. Although various characteristics of Project Based Learning (PBL) can potentially contribute to the improvement of students’ self-efficacy, the evidence on the relationship between the elements of design and the improvement of students’ self-efficacy in school science has been little explored. To offer design guidelines, the research presented aims at exploring which characteristics of the inquiry carried out in two variations of “The scientific congress” project can lead to an improvement in self-efficacy of 14-15-year-old participating students in two secondary schools (A and B). A questionnaire was designed and answered by 60 students before and after their participation in the project (10 boys and 16 girls from School A, and 23 boys and 11 girls from School B). Results show that research strategies with different degrees of authenticity in scientific inquiry in school do not necessarily lead to an improvement in science self-efficacy of students in the short term. The article discusses the need to include other complementary strategies to guarantee that both girls and boys can successfully participate in real scientific research experiences.

Keywords: self-efficacy, Project-Based Learning, secondary education, inquiry

Keywords


Downloads

Download data is not yet available.

Supporting Agencies  

This research has been supported by the Ministerio de Economía y Competitividad (PGC2018-096581-B-C21) as well as the ACELEC group (2017SGR1399) and the ARGET group (2017SGR01682)

Author Biographies

Carme Grimalt-Álvaro, Universitat Rovira i Virgili

Carme holds a PhD in Mathematics and Experimental Science Education from the Universitat Autònoma de Barcelona. She worked as a researcher at the Centre de Recerca per a l’Educació Científica i Matemàtica (CRECIM) and carried out tasks related to research, dissemination and innovation in education. Her work is centered on two main domains; teaching and learning in STEM areas of studies and promoting equality in STEAM education. Carme has taught at the Science Education Faculty at the Universitat Autònoma de Barcelona, at the Universitat de Barcelona and at the Universitat Pompeu Fabra and also participated in primary and secondary school teacher training for in-service and pre-service teachers. She is currently a post-doctoral researcher at Applied Research Group in Educational Technologies (ARGET) of Universitat Rovira i Virgili.

Enric Ortega Torres, Florida Universitària

Dr Enric Ortega Torres is a researcher in science teaching at Florida Universitària. He completed his thesis on the influence of learning strategies and sensory preferences of learning resources on the performance of high school students in science subjects. He is also a teacher of science education in the degrees and masters of education at the university level. During his career, he was the director of Florida Secondary between 2014 and 2017, leading his process of methodological transformation. In addition, he has been the pedagogical coordinator of different European Erasmus + projects.

Digna Couso Lagarón, Centre per a l’Educació Científica i Matemàtica (CRECIM) i Departament de Didàctica de les Matemàtiques i les Ciències Experimentals, Facultat de Ciències de l’Educació, Universitat Autònoma de Barcelona, Bellaterra

Digna Couso has a degree in Physics and a PhD in Science Teaching. She currently works as an associate professor at the Faculty of Education Sciences (UAB). As a university professor, she teaches initial training for primary and secondary teachers at the grade and master levels, respectively. She is also the director of CRECIM (Center for Research in Sciences and Mathematical Education) and head of the Scientific Education Unit of the Department of Didactics of Mathematics and Sciences, since 2015. She has participated in numerous research projects financed at the national level and international within the framework of European Commission programs. Her best-known research papers and contributions are found in the field of scientific research, particularly in modeling and model-based teaching and learning, and in building learning progressions of key models of science education.

Laura Paloma Romeu, Institut Cardener

Laura Paloma is a teacher in Institut Cardener (secondary school), where she also coordinates different projects of educational transformation. She has actively participated in diverse international projects of educational innovation and improvement.

References

Archer, L., Dawson, E., Seakins, A., DeWitt, J., Godec, S., y Whitby, C. (2016). “I’m Being a Man Here”: Urban Boy’s Performances of Masculinity and Engagement With Science During a Science Museum Visit. Journal of the Learning Sciences, 25(3), 438–485.

Archer, L., Osborne, J., DeWitt, J., Dillon, J., Wong, B., y Willis, B. (2013). ASPIRES. Young people’s science and career aspirations, age 10–14.

Archer, L., y Dewitt, J. (2015). Science Aspirations and Gender Identity: Lessons from the ASPIRES Project. In E. K. Henriksen, J. Dillon, y J. Ryder (Eds.), Understanding Student Participation and Choice in Science and Technology Education (pp. 89–102). Springer Editorial.

Atadero, R. A., Rambo-Hernandez, K. E., y Balgopal, M. M. (2015). Using social cognitive career theory to assess student outcomes of group design projects in statics. Journal of Engineering Education, 104(1), 55–73.

Baker, T. R., y White, S. H. (2003). The effects of G.I.S. on students’ attitudes, Self-efficacy, and achievement in middle school science classrooms. Journal of Geography, 102(6), 243–254. https://doi.org/10.1080/00221340308978556

Bandura, A. (2012). On the Functional Properties of Perceived Self-Efficacy Revisited. Journal of Management, 38(1), 9–44.

Bandura, Albert. (1997). Self-efficacy: the exercise of control. New York: W. H. Freeman.

Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., y Gilberto, J. M. (2019). The effect of authentic project-based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3–23.

Bong, M., y Skaalvik, E. M. (2003). Academic Self-Concept and Self-Efficacy: How Different Are They Really? Educational Psychology Review, 15(1), 1–40.

Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955–970.

Britner, S. L., y Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485–499.

Bryant, S. K. (2017). Self-efficacy sources and academic motivation: A qualitative study of 10th graders. Electronic Theses and Dissertations.

Capraro, R. M., & Corlu, M. S. (2013). Changing views on assessment for STEM project-based learning. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach (pp. 109–118). Sense Publishers. https://doi.org/10.1007/978-94-6209-143-6_12

Crujeiras Pérez, B., & Jiménez Aleixandre, M. P. (2018). Influencia de distintas estrategias de andamiaje para promover la participación del alumnado de secundaria en las prácticas científicas. Enseñanza de Las Ciencias, 2(36), 23–42. https://pdfs.semanticscholar.org/399b/8db3e9d6058bb9b1fdeed3fa76bf16fc30cb.pdf

Dewsbury, B., & Brame, C. J. (2019). Inclusive teaching. CBE Life Sciences Education, 18(2), 1–5. https://doi.org/10.1187/cbe.19-01-0021

Domènech-Casal, J. (2018). Aprendizaje Basado en Proyectos en el marco STEM. Componentes didácticas para la Competencia Científica. Ápice. Revista de Educación Científica, 2(2), 29–42.

Fernandez, F. B. (2017). Action research in the physics classroom: the impact of authentic, inquiry based learning or instruction on the learning of thermal physics. Asia-Pacific Science Education, 3(1). https://doi.org/10.1186/s41029-017-0014-z

Ferrés Gurt, C., Marbà Tallada, A., y Sanmartí, N. (2015). Trabajos de indagación de los alumnos: instrumentos de evaluación e identificación de dificultades. Revista Eureka, 12(1), 22–37.

Grimalt-Álvaro, C., y Couso, D. (2018). Toolkit for assessing the promotion of self-efficacy. Part 1, STEAM4U model tools. https://ddd.uab.cat/record/214172

Harrison, H., Birks, M., Franklin, R., & Mills, J. (2017). Case study research: Foundations and methodological orientations. Forum Qualitative Sozialforschung, 18(1), 1–12. https://doi.org/10.17169/fqs-18.1.2655

Hasni, A., Bousadra, F., Belletête, V., Benabdallah, A., Nicole, M. C., y Dumais, N. (2016). Trends in research on project-based science and technology teaching and learning at K–12 levels: a systematic review. Studies in Science Education, 52(2), 199–231.

Huang, C. (2013). Gender differences in academic self-efficacy: A meta-analysis. European Journal of Psychology of Education, 28(1), 1–35.

Jiménez-Liso, R. (2020). Aprender ciencia escolar implica aprender a buscar pruebas para construir conocimiento (indagación). (D. Couso, R. Jiménez-Liso, C. Refojo, y J. A. Sacristán, Eds.), Enseñando ciencia con ciencia. Madrid: Penguin Random House.

Ketelhut, D. J. (2007). The impact of student self-efficacy on scientific inquiry skills: An exploratory investigation in river city, a multi-user virtual environment. Journal of Science Education and Technology, 16(1), 99–111. https://doi.org/10.1007/s10956-006-9038-y

Kier, M. W., Blanchard, M. R., Osborne, J. W., y Albert, J. L. (2014). The Development of the STEM Career Interest Survey (STEM-CIS). Research in Science Education, 44(3), 461–481.

Lai, C. L., Hwang, G. J., y Tu, Y. H. (2018). The effects of computer-supported self-regulation in science inquiry on learning outcomes, learning processes, and self-efficacy. Educational Technology Research and Development, 66(4), 863–892. https://doi.org/10.1007/s11423-018-9585-y

Michaels, S., Shouse, A. W., y Schweingruber, H. A. (2007). Learning from Science Investigations. In Ready, Set, SCIENCE! Putting Research to Work in K-8 Science Classrooms (p. 220). The National Academies Press.

Mostafa, T. (2019). Why don’t more girls choose to pursue a science career? In PISA in Focus (Vol. 93, p. 6). Paris: OECD Publishing.

OECD. (2019). PISA 2018 Results (Volume II): Where All Students Can Succeed. OECD Publishing.

Osborne, J. (2014). Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 25, 177–196.

Pajares, F. (2006). Self-efficacy during childhood and adolescence. In Self-efficacy beliefs of adolescents (pp. 339–367).

Rittmayer, A., y Beier, M. (2009). Overview: Self-Efficacy in STEM. Applying Research to Practice Resources, 1–12.

Ro, H. K., y Loya, K. I. (2015). The Effect of Gender and Race Intersectionality on Student Learning Outcomes In Engineering. The Review of Higher Education, 38(3), 359–396.

Somekh, B., y Lewin, C. (Eds.). (2005). Research Methods in the Social Sciences. London: SAGE Publications.

Tanner, K. D. (2013). Structure matters: Twenty-one teaching strategies to promote student engagement and cultivate classroom equity. CBE Life Sciences Education, 12(3), 322–331. https://doi.org/10.1187/cbe.13-06-0115

The GiST project. (2020). Seven principles for a gender-inclusive learning environment. https://www.thegist.edu.au/schools/create-an-inspiring-stem-environment/seven-principles-for-a-gender-inclusive-learning-environment/

Thomas, G., Anderson, D., y Nashon, S. (2008). Development of an Instrument Designed to Investigate Elements of Science Students’ Metacognition, Self‐Efficacy and Learning Processes: The SEMLI‐S. International Journal of Science Education, 30(13), 1701–1724.

Thomas, J. W. (2000). A Review of Research on Project-Based Learning.

Tomczak, M., & Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends in Sport Sciences, 1(21), 19–25.

Usher, E. L. (2009). Sources of Middle School Students’ Self-Efficacy in Mathematics: A Qualitative Investigation. American Educational Research Journal, 46(1), 275–314.

Webb-Williams, J. (2018). Science Self-Efficacy in the Primary Classroom: Using Mixed Methods to Investigate Sources of Self-Efficacy. Research in Science Education, 48(5), 939–961.