¿Cómo ayuda la Pizarra Digital Interactiva (PDI) a la hora de promover prácticas de indagación y modelización en el aula de ciencias?

Descargas

Visitas a la página del resumen del artículo:  1427  

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2018.v15.i3.3302

Información

La educación científica hoy
3302
Publicado: 17-05-2018
PlumX

Autores/as

  • Victor López Simó (ES) Centre per a l’Educació Científica i Matemàtica (CRECIM). Edifici GL-304. Facultat de Ciències de l’Educació. Campus de la Universitat Autònoma de Barcelona.
  • Carme Grimalt-Álvaro (ES) Centre per a l’Educació Científica i Matemàtica (CRECIM). Edifici GL-304. Facultat de Ciències de l’Educació. Campus de la Universitat Autònoma de Barcelona.
  • Digna Couso Lagarón (ES) Centre per a l’Educació Científica i Matemàtica (CRECIM). Edifici GL-304. Facultat de Ciències de l’Educació. Campus de la Universitat Autònoma de Barcelona.

Resumen

Resumen: La Pizarra Digital Interactiva (PDI), interfaz táctil conectada a un ordenador, permite no solo escribir o dibujar como en una pizarra tradicional sino también insertar y arrastrar imágenes, navegar o resaltar en pantalla. En este artículo analizamos el potencial de esta herramienta educativa para la enseñanza y aprendizaje de las ciencias en secundaria desde la perspectiva de la práctica científica, centrándonos en las esferas de indagación y modelización. Para ello, se han analizado 20 talleres experimentales de física, química y biología dirigidos a estudiantes de 13 a 17 años y que se llevan a cabo en un laboratorio informatizado. Estos talleres están estructurados en torno a un ciclo de aprendizaje que incluye las siguientes etapas: explorar los modelos iniciales del alumnado, diseñar experimentos, realizar predicciones e hipótesis, recoger y analizar datos experimentales y elaborar modelos consensuados en grupo. El análisis ha permitido caracterizar qué acciones con la PDI se utilizan en cada etapa del ciclo definido, e identificar aquellos episodios relevantes donde el potencial del dispositivo es clave a la hora de promover que los y las estudiantes se involucren en procesos de indagación y modelización.

Palabras clave: Pizarra Digital Interactiva; argumentación; indagación; modelización; educación secundaria; aplicaciones informáticas; How does the Interactive Whiteboard (IWB) help in promoting practices of inquiry and modeling in science classroom?

Abstract: Interactive Whiteboards (IWB) are touch interfaces connected to a computer. As such, they enable the user not only to write and draw on the screen as with traditional whiteboards, but also to insert and drag pictures, as well as to navigate or highlight on the screen. In this paper, we analyze the potential of these educational tools in secondary school science education from the perspective of promoting students’ participation in the scientific practices, focusing on inquiring and modelling. To this end, 20 physics, chemistry and biology experimental workshops have been analyzed. All these workshops were carried out in a computer-based laboratory and were addressed to 13 to 17-year-old-students. The workshops are structured around a learning sequence that includes the following stages: exploration of students’ previous ideas, design of experiments, development of predictions and hypothesis, experimental data gathering and analysis, and group elaboration of consensus models. The analysis has made possible to characterize which actions carried out with the IWB are used in each stage of the defined cycle, and to identify those relevant episodes where the potential of the device is key in encouraging students to participate in inquiry and modeling practices.

Keywords: Interactive Whiteboard; argumentation; inquiry; modelling; secondary education; computer applications

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aflalo, E., Zana, L. & Huri, T. 2017. The interactive whiteboard in primary school science and interaction. Interactive Learning Environments, 0(0), pp.1–14.

Area-Moreira, M., Hernández-Rivero, V. & Sosa-Alonso, J.-J. 2016. Integración de las TIC en el aula. Comunicar, 47(24), pp.79–87.

Beauchamp, G. & Parkinson, J. 2005. Beyond the “wow” factor: developing interactivity with the interactive whiteboard. School Science Review, 86(316), pp.97–104.

Bozzo, G., Grimalt-Álvaro, C. & López, V. 2015. The uses of Interactive Whiteboard in a science laboratory. In C. Fazio & R. M. Sperandeo Mineo, eds. GIREP-MPTL 2014 Proceedings. Palermo, pp. 549–558.

Chamizo, J.A. & Izquierdo, M. 2005. Ciencia en contexto: una reflexión desde la filosofía. Alambique, 46(1), pp.9–17.

Clement, J.J. 2008. Student/Teacher Co-construction of Visualizable Models in Large Group Discussion. In J. J.

Clement & A. Rea-Ramirez, eds. Model Based Learning and Instruction in Science. Springer, pp. 11–22.

Couso, D. & Garrido, A. 2016. Models and modelling in elementary school pre-service teacher education: the influence of teaching scenarios. In 11th ESERA Conference Selected Contributions. pp. 1–18.

Crook, S.J., Sharma, M.D. & Wilson, R. 2014. An Evaluation of the Impact of 1:1 Laptops on Student Attainment in Senior High School Sciences. Dx.Doi.Org, 37(2), pp.272–293.

Duschl, R.A. & Grandy, R.E. 2012. Two Views About Explicitly Teaching Nature of Science. Science & Education, 22, pp.2109–2139.

Evagorou, M., Erduran, S. & Mäntylä, T. 2015. The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to “seeing” how science works. International Journal of STEM Education, 2(1), p.11.

Grimalt-Álvaro, C. 2016. La tecnologia a les classes de ciències de secundària: anàlisi dels processos de canvi en el professorat. Universitat Autònoma de Barcelona.

Gutiérrez, R. 2004. La modelización y los procesos de enseñanza / aprendizaje. Alambique Didàctica de las Ciencias Experimentales, 42, pp.8–18.

Hennessy, S. & London, L. 2013. Learning from International Experiences with Interactive Whiteboards: The role of professional development in integrating the technology. OECD Education Working Papers, (89), p.33.

Higgins, S., Wall, K. & Smith, H.J. 2005. “The visual helps me understand the complicated things”: pupil views of teaching and learning with interactive whiteboards. British Journal of Educational Technology, 36(5), pp.851–867.

Izquierdo, M. et al. 1999. Caracterización y fundamentación de la ciencia escolar. Enseñanza de las ciencias, número ext (December 2015), pp.79–91.

Johnstone, A.H. 1991. Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), pp.75–83.

Justi, R. 2006. La enseñanza de ciencias basada en la elaboración de modelos. Enseñanza de las ciencias, 24(2), pp.173–184.

Kelly, J. 2013. Inquiry teaching and learning: philosophical considerations. In M. R. Matthews, ed. Handbook of Historical and Philosophical Studies in Science Education. Pensylvania: Springer.

Kennewell, S. & Beauchamp, G. 2007. The features of interactive whiteboards and their influence on learning. Learning, Media and Technology, 32(3), pp.227–241.

Khan, S. 2007. Model-Based Inquiries in Chemistry. Science Education, 91(1), pp.877–905.

Koehler, M.J. & Mishra, P. 2009. What is Technological Pedagogical Content Knowledge (TPACK)? J. M. Spector et al., eds. Contemporary Issues in Technology and Teacher Education, 9(1), pp.60–70.

Kress, G. & van Leeuwen, T. 1996. Reading Images. The Grammar of Visual Design, New York: Routledge.

Kung Teck, W. 2013. Affordances of interactive whiteboards and associated pedagogical practices: perspectives of teachers of Science with children aged five to six years. The Turkish Online Journal of Educational Technology, 12(1), pp.1–8.

Lemke, J.L. 1990. Talking science: Language, learning, and values,

Linn, M. 2003. Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), pp.727–758.

López Simó, V. et al. 2017. El papel de las TIC en la enseñanza de las ciencias en secundaria desde la perspectiva de la práctica científica. In X Congreso Enseñanza de las Ciencias. p. 49.

Márquez, C., Izquierdo, M. & Espinet, M. 2006. Multimodal science teachers’ discourse in modeling the water cycle. Science Education, 90(2), pp.202–226.

Mercer, N., Hennessy, S. & Warwick, P. 2010. Using interactive whiteboards to orchestrate classroom dialogue. Technology, Pedagogy and Education, 19(2), pp.195–209.

Miller, D. et al. 2005. How can the use of an interactive whiteboard enhance the nature of teaching and learning in secondary mathematics and modern foreign languages ?,

Minner, D.D., Levy, A.J. & Century, J. 2010. Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), pp.474–496.

Mortimer, E.F. & Scott, P.H. 2003. Meaning Making in Secondary Science Classrooms, McGraw-Hill International.

Murcia, K. 2014. Interactive and multimodal pedagogy: A case study of how teachers and students use interactive whiteboard technology in primary science. Australian Journal of Education, 58(1), pp.74–88.

National Research Council 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education. Division of Behavioral and Social Sciences and Education., ed., Washington, DC: The National Academies Press.

Ormanci, U. et al. 2015. A Thematic Review of Interactive Whiteboard Use in Science Education: Rationales, Purposes, Methods and General Knowledge. Journal of Science Education and Technology, 24(5), pp.532–548.

Osborne, J. 2014. Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 25, pp.177–196.

Osborne, J. & Hennessy, S. 2003. Literature Review in Science Education and the Role of ICT: Promise, Problems and Future Directions.,

Pedró, F. 2011. Tecnología y escuela: lo que funciona y por qué, Fundación Santillana.

Pintó, R., Couso, D. & Hernández, M.I. 2010. An inquiry-oriented approach for making the best use of ICT in the classroom. eLearning Papers, 20(July), pp.1–14.

Romero, M. & Quesada, A. 2014. Nuevas tecnologías y aprendizaje significativo de las ciencias. Enseñanza de las ciencias: Revista de investigación y experiencias didácticas, 32(1), pp.101–115.

Roschelle, J.M. et al. 2001. Changing how and what children learn in school with computer-based technologies. The Future of children, 10(2), pp.76–101.

Smetana, L.K. & Bell, R.L. 2011. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), pp.1337–1370.

Vygotsky, L.S. 1978. Mind in society: The development of higher psychological processes.

Webb, M.E. 2005. Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), pp.705–735.

Windschitl, M., Thompson, J. & Braaten, M. 2008. Beyond the Scientific Method: Model-Based Inquiry as a New Paradigm of Preference for School Science Investigations. Science Education, 92(5), pp.941–967.