El empleo espontáneo de conectores y vocabulario relacionado con las ciencias: Implicaciones en la argumentación escrita

Contenido principal del artículo

Pablo Antonio Archila
Pilar Luna-Calderón
Mayer Mesa-Piñeros

Resumen

Este estudio da continuidad a esfuerzos previos dedicados a promover la escritura argumentativa en ciencia escolar. En el presente artículo se dan a conocer los conectores y el vocabulario relacionado con las ciencias que emplean espontáneamente (sin intervención del profesor) estudiantes entre 8 y 18 años de edad. Las producciones escritas (textos narrativos) de 343 participantes (183 niñas - 160 niños) fueron examinadas para conocer cuáles son los conectores y el vocabulario relacionado con las ciencias que emplean espontáneamente, y cuál es la diferencia de su empleo según género y edad. Los resultados indican, por lo menos en este contexto, que el empleo de conectores depende de la edad y no del género. Respecto al vocabulario, se hallaron variaciones leves (poco significativas) con el paso de la edad de los participantes, niñas y niños lo emplean espontáneamente de modo similar. Estos resultados soportan la urgente necesidad de propiciar escenarios de escritura argumentativa en clase de ciencias.

Palabras clave: Argumentación escrita; conector; didáctica de las ciencias; vocabulario.

Students’ spontaneous use of connectors and vocabulary related to science: Implications for written argumentation

This study continues previous effort to promote written argumentation in school science. This article shows the 343 students’ (183 females and 160 males, 8–18 years old) spontaneous (without the teacher’s intervention) use of connectors and vocabulary related to science. Participants’ written productions were examined in order to know which connectors and vocabulary they used spontaneously. Data on students’ gender and age were also collected to explore the relationship between these factors. Results show, within this context at least, that the use of connectors depends on the age and does not depend on the gender. In relation to the vocabulary, slight variations (insignificants) were found over the age of participants, girls and boys use it in a similar way. Findings support the urgent need for promoting written argumentation scenarios in science classrooms.

Keywords: Connector; science teaching; vocabulary; written argumentation.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Archila, P. A., Luna-Calderón, P., & Mesa-Piñeros, M. (2016). El empleo espontáneo de conectores y vocabulario relacionado con las ciencias: Implicaciones en la argumentación escrita. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 14(1), pp. 3-23. Recuperado a partir de https://revistas.uca.es/index.php/eureka/article/view/3002
 
Sección
Fundamentos y líneas de trabajo

Citas

Acevedo, J. A. (2004). Reflexiones sobre las finalidades de la enseñanza de las ciencias: Educación científica para la ciudadanía. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 1(1), 3–16.

Aragón, M. M. (2007). Las ciencias experimentales y la enseñanza bilingüe. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 4(1), 152–175.

Archila, P. A. (2012). La investigación en argumentación y sus implicaciones en la formación inicial de profesores de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(3), 361–375.

Archila, P. A. (2013). La Argumentación y sus aportes a la enseñanza bilingüe de las ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3), 406–423.

Archila, P. A. (2014a). Are science teachers prepared to promote argumentation? A case study with pre-service teachers in Bogotá city. Asia-Pacific Forum on Science Learning and Teaching Journal, 15(1), 1–21.

Archila, P. A. (2014b). La argumentación de profesores de química en formación inicial (práctica profesional docente II): Un estudio de caso en Colombia. Enseñanza de las Ciencias, 32(3), 705–706.

Archila, P. A. (2014c). Argumentation in chemistry teacher education: Past, present and future opportunities. Revista Científica Vozes dos Vales, 6, 1–12.

Archila, P. A. (2014d). Comment enseigner et apprendre chimie par l’argumentation? Saarbrücken: Éditions Universitaires Européennes.

Archila, P. A. (2015a). Uso de conectores y vocabulario espontáneo en la argumentación escrita: Aportes a la alfabetización científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(3), 402–418.

Archila, P. A. (2015b). Using history and philosophy of science to promote students’ argumentation: A teaching–learning sequence based on the discovery of oxygen. Science & Education, 24(9), 1201–1226.

Archila, P. A. (2015c). Caracterización del contenido formal y científico en la escritura de cuentos: Relaciones con la argumentación en ciencias. En P. Membiela, N. Casado, y M. I. Cebreiros (Eds.), La enseñanza de las ciencias: desafíos y perspectivas (pp. 411-415). Santiago de Compostela: Educación Editora.

Archila, P. A. (2016). ¿Cómo formar profesores de ciencias que promuevan la argumentación?: Lo que sugieren avances actuales de investigación. Revista Currículum y Formación del Profesorado (en prensa).

Balgopal, M. M., Laybourn, P., Wallace, A. M., y Brisch, E. (2015, Abril). An exploratory study of how college students make sense of cancer in writing-to-learn activities. En memorias Annual Conference of the National Association for Research in Science Teaching (NARST), Chicago, US.

Bauer, M. W. (2015). Science literacy and beyond. Public Understanding of Science, 24(3), 258-259.

Blanco-López, Á., España-Ramos, E., y González-García, F. J. (2015). Key aspects of scientific competence for citizenship: A Delphi study of the expert community in Spain. Journal of Research in Science Teaching, 52(2), 164–198.

Bremond, C. (1973). Logique du récit. Paris: Seuil.

Brown, P. L., y Concannon, J. P. (2014). Investigating student perceptions of vocabulary and learning in middle school science. Advances in Social Sciences Research Journal, 1(3), 196–206.

Brown, P. L., y Concannon, J. P. (2016). Students’ perceptions of vocabulary knowledge and learning in a middle school science classroom, International Journal of Science Education, 38(3), 391–408.

Bryce, N. (2013). Textual features and language demands of primary grade science textbooks: The call for more informational texts in primary grades. En M. S. Khine (Ed.), Critical analysis of science textbooks (pp. 101–122). Dordrecht: Springer.

Cervetti, G., Barber, J., R. Dorph, Pearson, P. D., y Goldschmidt, P. G. (2012). The impact of an integrated approach to science and literacy in elementary school classrooms. Journal of Research in Science Teaching, 49(5), 631–658.

Cervetti, G., y Pearson, P. D. (2012). Reading, writing, and thinking like a scientist. Journal of Adolescent & Adult Literacy, 55(7), 580–586.

Corson, D. (1984). The lexical bar: Lexical change from 12 to 15 years measured by social class, region and ethnicity. British Educational Research Journal, 10(2), 115–133.

Denle, I., y Krajcik, J. (2016). Using mobile devices to connect teachers and museum educators. Research in Science Education, DOI: 10.1007/s11165-015-9512-8.

Driver, R., Newton, P., y Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education , 84(3), 287–312.

Erduran, S., Ozdem, Y., y Park, J.-Y. (2015). Research trends on argumentation in science education: A journal content analysis from 1998–2014. International Journal of STEM Education, 2(5), 1–12.

Feinstein, N. W. (2015). Education, communication, and science in the public sphere. Journal of Research in Science Teaching, 52(2), 145–163.

Forwood, C. L. (2012). Investigating differences in understanding of vocabulary in secondary science. Tesis doctoral, Curtin University of technology, Perth, Australia.

Frey, N., y Fisher, D. (2007). Reading for information in elementary school: Content literacy strategies to build comprehension . Upper Saddle River, NJ: Pearson.

García Márquez, G. (1995). El ahogado más hermoso del mundo. Bogotá: Voluntad.

Geelan, D., Mukherjee, M., y Brian, M. (2012). Developing key concepts in physics: Is it more effective to teach using scientific visualizations? Teaching Science, 58(2), 33–36.

Groves, F. H. (1995). Science vocabulary load of selected secondary science textbooks. School Science and Mathematics, 95(5), 231–235.

Halliday, M. A. K., y Martin, J. R. (1993). Writing science: Literacy and discursive power. Pittsburgh: University of Pittsburgh Press.

Hand, B. (Ed.). (2007). Science inquiry, argument and language: A case for the science writing heuristic. Rotterdam: Sense Publishers.

Hand, B., y Prain, V. (2012). Writing as a learning tool in science: Lessons learnt and future agendas. En B. J. Fraser., K. G. Tobin., y C. J. McRobbie. (Eds.). Second international handbook of science education (pp. 1375–1384). Dordrecht: Springer.

Harms, N. C., y Yager, R. E. (1981). What research says to the science teacher. Vol. 3. (Report No. 47 14776). Washington: National Science Teachers Association.

Heitmann, P. Hecht, M. Schwanewedel, J., y Schipolowski, S. (2014). Students’ argumentative writing skills in science and first-language education: Commonalities and differences. International Journal of Science Education, 36(18), 3148–3170.

Holbrook, J., y Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347–1362.

Jorba, J., Gómez, I., y Prat, A. (2000). Uso de la lengua en situación de enseñanza aprendizaje desde las áreas curriculares. Madrid: Síntesis.

Kafka, F. (2005). Un artista del trapecio. En J. Coronado. (Ed.). Para leerte mejor 1. Lecturas recomendadas (pp. 90–91). Balderas: Limusa.

Kelly, G., Regev, J., y Prothero, W. (2007). Analysis of lines of reasoning in written argumentation. En S. Erduran y M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 137–158). New York: Springer.

Khishfe, R. (2012). Relationship between nature of science understandings and argumentation skills: A role for counterargument and contextual factors. Journal of Research in Science Teaching, 49(4), 489–514.

Lee, M. H., Wu, Y. T., y Tsai, C. C. (2009). Research trends in science education from 2003 to 2007: A content analysis of publications in selected journals. International Journal of Science Education, 31(15), 1999–2020.

Lemke, J. (1997). Aprender a hablar ciencia. Lenguaje, aprendizaje y valores. Barcelona: Paidós.

Levin, T., y Wagner, T. (2006). In their own words: Understanding student conceptions of writing through their spontaneous metaphors in the science classroom. Instructional Science, 34(3), 227–278.

Lin, T.-C., Lin, T.-J., y Tsai, C.-C. (2014). Research trends in science education from 2008 to 2012: A systematic content analysis of publications in selected journals. International Journal of Science Education, 36(8), 1346–1372.

Matute, A. M. (1995). El árbol de oro y otros relatos. Madrid: Bruño.

Merino, J. M. (2002). El niño-lobo del cine Mari. En P. Castro (Ed.), Doce cuentos españoles del siglo XX (pp. 119–126). Madrid: Anaya.

Moss, B. (2005). Making a case and a place for effective content area literacy instruction in the elementary grades. The Reading Teacher, 59(1), 46–55.

Navarro, M., Förster, C., González, C., y González-Pose, P. (2016). Attitudes toward science: Measurement and psychometric properties of the Test of Science-Related Attitudes for its use in Spanish-speaking classrooms. International Journal of Science Education, 38(9), 1459–1482.

Newton, P., Driver, R., y Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

Next Generation Science Standards (NGSS). (2013). Next generation science standards: For states by states. Washington, DC: National Academies Press.

Pearson, P. D., Hiebert, E. H., y Kamil, M. L. (2007). Vocabulary assessment: What we know and what we need to learn. Reading Research Quarterly, 42(2), 282–296.

Plantin, C. (2005). L'argumentation: Histoire, théories, perspectives. Paris: PUF.

Plantin, C., y Muñoz, N. I. (2011). El hacer argumentativo. Buenos Aires: Biblos.

Quicke, J., y Winter, C. (1994). Teaching the language of learning: Towards a metacognitive approach to pupil empowerment. British Educational Research Journal, 20(4), 429–445.

Quiroga, H. (2003). El almohadón de plumas. Ciudad de México: Ediciones de la Secretaría de Educación Pública.

Roberts, D. A. (2007). Scientific literacy/science literacy. En S. K. Abell y N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum Associates.

Sampson, V., Enderle, P., Grooms, J., y Witte, S. (2013). Writing to learn by learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643–670.

Sampson, V., Grooms, J., y Walker, J. (2011). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217–257.

Sampson, V., y Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 20(6), 577–588.

Sampson, V., y Walker, J. (2012). Argument-driven inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science Education, 34(10), 1443 – 1485.

Schoerning, E., Hand, B., Shelley, M., y Therrien, W. (2015). Language, access, and power in the elementary science classroom. Science Education, 99(2), 238–259.

Shemwell, J. T., Gwarjanski, K. R., Capps, D. K., Avargil, S., y Meyer, J. L. (2015). Supporting teachers to attend to generalisation in science classroom argumentation. International Journal of Science Education, 37(4), 599–628.

Simon, S., Erduran, S., y Osborne, J. (2003). Systematic teacher development to enhance the use of argumentation in school science activities. En J. Wallace y J. Loughran (Eds.), Leadership and professional development in science education. New possibilities for enhancing teacher learning (pp. 198–217). London y New York: RoutledgeFalmer.

Simon, S., Erduran, S., y Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235–260.

Simon, U. K., Steindl, H., Larcher, N., Kulac, H., y Hotter, A. (2016). Young science journalism: Writing popular scientific articles may contribute to an increase of high-school students’ interest in the natural sciences. International Journal of Science Education, 38(5), 814–841.

Takao, A. Y., y Kelly, G. J. (2003). Assessment of evidence in university students’ scientific writing. Science & Education, 12(4), 341–363.

Tobin, K. G. (2012). Sociocultural perspectives on science education. En B. J. Fraser., K. G. Tobin y C. J. McRobbie (Eds.), Second international handbook of science education (pp. 3–17). Dordrecht: Springer.

Tsai, C.-C., y Wen, L. M. C. (2005). Research and trends in science education from 1998 to 2002: A content analysis of publication in selected journals. International Journal of Science Education, 27(1), 3–14.

Tynjala, P., Mason, L., y Lonka, K. (2001). Writing as a learning tool: An introduction. En P. Tynjala., L. Mason y K. Lonka (Eds.), Studies in writing: Vol. 7. Writing as a learning tool: Integrating theory and practice (pp. 7–22). Boston: Kluwer Academic Publishers.

Xiao, S., y Sandoval, W. A. (2015, Abril). Functional roles of inscriptional evidence in children’s written arguments about socioscientific issues. En memorias Annual Conference of the National Association for Research in Science Teaching (NARST), Chicago, US.

Xie, Q., y So, W. (2012). Understanding and practice of argumentation: A pilot study with Mainland Chinese pre-service teachers in secondary science classrooms. Asia-Pacific Forum on Science Learning and Teaching, 13(2), 1–20.

Yager, R. E. (1983). The importance of terminology in teaching K–12 science. Journal of Research in Science Teaching, 20(6), 577–588.

Yager, R. E. (2014). Prefacio. En R. E. Yager y H. Brunkhorst (Eds.), Exemplary STEM programs: Designs for success (pp. ix–xiv). Arlington, Virginia: NSTA Press.

Yun, S. M., y Kim, H.-B. (2015). Changes in students’ participation and small group norms in scientific argumentation. Research in Science Education, 45(3), 465–484.