An epistemological approach for teaching energy in Newtonian Mechanics in Introductory Physics courses

- PDF (Español (España)) 172
- EPUB (Español (España)) 16
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 14
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i1.1301Info
Abstract
Energy is a fundamental concept that allows the explanation and prediction of phenomena in all fields of physics. Its understanding is important for citizens to make informed decisions about socio-scientific problems. This may explain why understanding energy has become a priority learning objective in the science curricula of many countries, and why its teaching and learning have been the subject of extensive research. This article proposes an epistemic approach to teaching energy within the field of mechanics to students in introductory physics courses. This approach considers the knowledge in physics to be a result of an arduous process of problem solving and rigorous testing of initial hypotheses, and, is oriented to promote an updated understanding of the concept of energy. This article justifies the usefulness of the epistemological approach and illustrates its applicability when defining learning objectives in introductory physics courses in Newtonian mechanics that allow conceptual clarification within the complex network of concepts and levels of interpretation associated with the concept of energy.
Keywords
Downloads
How to Cite
License
Copyright (c) 2024 Nicolás Gandolfo, José Gutiérrez-Berraondo, Paulo Sarriugarte, Laura Buteler, Jenaro Guisasola

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).
Reconocimiento-NoComercial
CC BY-NC
References
Arons, A. B. (1989). Developing the Energy Concepts in Introductory Physics. The Physics Teacher, 27(8), 506–517.
Bächtold, M., y Guedj, M. (2013). Teaching energy informed by the history and epistemology of the concept with implications for teacher education. In International handbook of research in history, philosophy and science teaching (pp. 211–243). Springer.
Bächtold, M., y Munier, V. (2019). Teaching energy in high school by making use of history and philosophy of science. Journal of Research in Science Teaching, 56(6), 765-796.
Besson, U. (2001). Work and energy in the presence of friction: the need for a mesoscopic analysis. European Journal of Physics, 22(6), 613.
Boohan, R., y Ogborn, J. (1996). Differences, energy and change: a simple approach through pictures. Association for Science Education.
Brewe, E. (2011). Energy as a substancelike quantity that flows: Theoretical considerations and pedagogical consequences. Physical Review Special Topics – Physics Education Research, 7(2), 20106.
Chabay, R. W., y Sherwood, B. A. (2002). Matter & Interactions. I. Modern Mechanics. Wiley.
Chabay, R., Sherwood, B., y Titus, A. (2019). A unified, contemporary approach to teaching energy in introductory physics. American Journal of Physics, 87(7), 504-509.
Colonnese, D., Heron, P., Michelini, M., Santi, L., y Stefanel, A. (2012). A vertical pathway for teaching and learning the concept of energy. Review of Science, Mathematics and ICT Education, 6(1), 21-50.
De Berg, K. C. (1997). The development of the concept of work: a case where history can inform pedagogy. Science and Education, 6(5), 511-527.
Domènech, J. L., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., Trumper, R., Valdés, P., y Vilches, A. (2007). Teaching of Energy Issues: A Debate Proposal for a Global Reorientation. Science & Education, 16(1), 43-64.
Domènech, J. L., Menargues, A., y Limiñana, R. (2013). La superficialidad en la enseñanza del concepto de energía: una causa del limitado aprendizaje alcanzado por los estudiantes de bachillerato. Enseñanza de Las Ciencias: Revista de Investigación y Experiencias Didácticas, 31(3), 103-119.
Domènech, J. L., Rey, A., Nicolás, C., y Martínez-Torregrosa, J. (2023). Enseñanza sobre calor y temperatura en la educación secundaria. Alambique: Didáctica de las Ciencias Experimentales, 113, 7-13-
Dugas, R. (2012). A History of Mechanics (Revised Ed). Courier Corporation.
Duit, R. (1981). Understanding Energy as a Conserved Quantity‐Remarks on the Article by R. U. Sexl. European Journal of Science Education, 3(3), 291-301.
Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., y Parchmann, I. (2012). The Model of Educational Reconstruction - a Framework for Improving Teaching and Learning Science1. In D. Jorde & J. Dillon (Eds.), Science Education Research and Practice in Europe: Retrosspective and Prospecctive (pp. 13-37). SensePublishers.
Duschl, R. A. (1994). Research on the history and philosophy of science. In Handbook of Research on Science Teaching and Learning (p. Vol. 2, 443). Macmillan.
Etkina, E., Gentile, M., y Van Heuvelen, A. (2014). College Physics. Pearson Education Inc, USA.
Feynman, R. P., Leighton, R. B., y Sands, M. L. (1963). The Feynman Lectures on Physics, Mainly Mechanics, Radiations and Heat, volume1. Addison-Weslley Publishing.
Guisasola, J. (2013). Teaching and learning electricity: The relations between macroscopic level observations and microscopic level theories. In International Handbook of research in History, Philosophy and Science teaching (pp. 129-156). Springer.
Guisasola, J., Zuza, K., Ametller, J., y Gutierrez-Berraondo, J. (2017). Evaluating and redesigning teaching learning sequences at the introductory physics level. Physical Review Physics Education Research, 13(2), 020139.
Guisasola, J., Ametller, J., y Zuza, K. (2021). Investigación basada en el diseño de Secuencias de Enseñanza-Aprendizaje: una línea de investigación emergente en Enseñanza de las Ciencias. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 18(1).
Gutiérrez-Berraondo, J., Zuza, K., Zavala, G., Sarriugarte, P., y Guisasola, J. (2022). University student understanding and reasoning on work–energy relations. European Journal of Physics, 43(6), 065701.
Hecht, E. (2003). An Historico-Critical Account of Potential Energy: Is PE Really Real? The Physics Teacher, 41(8), 486-493.
Hecht, E. (2008). Energy Conservation Simplified. The Physics Teacher, 46(2), 77-80.
Hecht, E. (2019). Understanding energy as a subtle concept: A model for teaching and learning energy. American Journal of Physics, 87(7), 495-503.
Hicks, N. (1983). Energy is the capacity to do work‐or is it? The Physics Teacher, 21(8), 529–530.
Holton, G., Brush, S., y Evans, J. (2001). Physics, the Human Adventure: From Copernicus to Einstein and Beyond. Rutgers University Press.
Jewett Jr., J. W. (2008). Energy and the confused student. Part I-V. The Physics Teacher, 46(1), 38–43; 81–86; 149–153; 210–217; 269–274.
Jiménez-Aleixandre, M. P., y Crujeiras, B. (2017). Epistemic Practices and Scientific Practices in Science Education BT - Science Education: An International Course Companion (K. S. Taber & B. Akpan (eds.); pp. 69-80). SensePublishers.
Kanderakis, N. (2014). What is the Meaning of the Physical Magnitude ‘Work’? Science & Education, 23(6), 1293-1308.
Kelly, G. J., y Duschl, R. A. (2002). Toward a research agenda for epistemological studies in science education Paper presented at the Annual Meeting of NARST. New Orleans LA.
Leaton Gray, S., Scott, D., y Mehisto, P. (2018). Curriculum Reform in the European Schools: Towards a 21st Century Vision, 1-183. Springer Nature.
Lehrman, R. L. (1973). Energy Is Not The Ability To Do Work. The Physics Teacher, 11(1), 15-18.
Lindsay, R. B. (1971). The Concept of Energy and its Early Historical Development. Foundations of Physics, 1(4), 383-393.
Lindsey, B. A., Heron, P. R. L., y Shaffer, P. S. (2009). Student ability to apply the concepts of work and energy to extended systems. American Journal of Physics, 77(11), 999-1009.
Lindsey, B. A., Heron, P. R. L., y Shaffer, P. S. (2012). Student understanding of energy: Difficulties related to systems. American Journal of Physics, 80(2), 154-163.
Lopes Coelho, R. (2009). On the concept of energy: how understanding its history can improve physics teaching. Science & Education, 18, 961-983.
López-Simó, V., y Couso, D. (2022). Un currículo operativo con 10 ideas clave sobre energía para construir a lo largo de la escolaridad. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 19(3), 1-15.
Matthews, M. R. (2017). History, philosophy and science teaching: New perspectives. Springer.
Maxwell, J. C. (1920). (1st edition 1877). Matter and motion. Society for Promoting Christian Knowledge.
Mungan, C. E. (2007). Thermodynamics of a Block Sliding Across a Frictional Surface. The Physics Teacher, 45(5), 288–291.
National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. In A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academies Press.
NGSS Lead States. (2013). Next Generation Science Standards: For States, By States, 1-2, 1–504. National Academies Press.
Neumann, K., y Nordine, J. C. (2023). Energy. In The International Handbook of Physics Education Research: Learning Physics (pp. 4.1-4.34). AIP Publishing LLC.
Ogborn, J. (1990). Energy, Change, Difference and Danger. School Science Review, 72(259), 81–85.
Roche, J. (2003). What is potential energy? European Journal of Physics, 24(2), 185.
Ruthven, K., Laborde, C., Leach, J., y Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational Researcher, 38(5), 329–342.
Sabo, H. C., Goodhew, L. M., y Robertson, A. D. (2016). University student conceptual resources for understanding energy. Physical Review Physics Education Research, 12(1), 10126.
Seeley, L., Vokos, S., y Etkina, E. (2019). Examining physics teacher understanding of systems and the role it plays in supporting student energy reasoning. American Journal of Physics, 87(7), 510-519.
Sherwood, B. A. (1983). Pseudowork and real work. American Journal of Physics, 51(7), 597–602.
Solbes, J., Guisasola, J., y Tarín, F. (2009). Teaching Energy Conservation as a Unifying Principle in Physics. Journal of Science Education and Technology, 18(3), 265-274.
Soto, M., Couso, D. y López, V. (2019). Una propuesta de enseñanza-aprendizaje centrada en el análisis del camino de la energía" paso a paso". Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(1), 1202.
Tarsitani, C., y Vicentini, M. (1991). Calore, energía, entropía. Franco Angeli.
Tiberghien, A., Vince, J., y Gaidioz, P. (2009). Design‐based Research: Case of a teaching sequence on mechanics. International Journal of Science Education, 31(17), 2275-2314.
Tipler, P. A., y Mosca, G. P. (2008). Physics for Scientists and Engineers (6th Edition). W.H.Freeman & Co Ltd.
Tong, D., Liu, J., Sun, Y., Liu, Q., Zhang, X., Pan, S., y Bao, L. (2023). Assessment of student knowledge integration in learning work and mechanical energy. Physical Review Physics Education Research, 19(1), 10127.
Trellu, J.-L., y Toussaint, J. (1986). La conservation, un grand principe. Aster: Recherches En Didactique Des Sciences Expérimentales, 2(1), 43-87.
Trumper, R., y Gorsky, P. (1993). Learning about energy: The influence of alternative frameworks, cognitive levels, and closed-mindedness. Journal of Research in Science Teaching, 30(7), 637-648.
UNESCO. (2017). Education for Sustainable Development Goals: learning objectives. In Education for Sustainable Development Goals: learning objectives. UNESCO.
Wittmann, M. C., Millay, L. A., Alvarado, C., Lucy, L., Medina, J., y Rogers, A. (2019). Applying the resources framework of teaching and learning to issues in middle school physics instruction on energy. American Journal of Physics, 87(7), 535-542.
Young, H. D., y Freedman, R. A. (2019). University Physics with Modern Physics (15th ed.). Pearson Education.