The modelling cycle through oral interaction in experimental workshops on force and motion

DOI

https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i2.2301

Info

Science education today
2301
Published: 30-05-2025
PlumX

Authors

  • Camilo Vergara Sandoval (CL) Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile. Núcleo Milenio para el Estudio del Desarrollo de las Habilidades Matemáticas Tempranas (MEMAT)
  • Víctor López-Simó (ES) Facultad de Ciencias de la Educación, Departamento de Didáctica de la Matemática y de las Ciencias Experimentales, Universitat Autònoma de Barcelona https://orcid.org/0000-0002-2161-9211
  • Digna Couso Lagarón (ES) Facultad de Ciencias de la Educación, Departamento de Didáctica de la Matemática y de las Ciencias Experimentales, Universitat Autònoma de Barcelona

Abstract

The modeling cycle is an instrument that allows both structuring the design of teaching and learning sequences and the guidance of the dialogic interaction in the classroom focused on the progression of students' scientific ideas. This cycle proposes 6 instructional phases associated with 6 expected students’ performance, the main ones being the use and expression of the student's initial model, the evaluation of these models and their revision based on the emergence of new points of view. However, the order of the modelling practices in real contexts often differs from the canonical ideal. This research analysed modelling practices associated with high school student-teacher interactions in 4 experimental Newtonian physics workshops. For this purpose, 9.5 hours of dialogue were recorded and transcribed, and more than 1,600 utterances grouped into 229 discursive sequences were analysed. By analysing the modelling practices associated with each sequence, we identified four main patterns of chaining of such practices that allow us to understand how modelling practices are discursively promoted in science classrooms, and the progress of students' scientific ideas through their participation in these practices.

Keywords


Downloads

Download data is not yet available.

Supporting Agencies  

Esta investigación se ha realizado durante el desarrollo del doctorado del primer autor, el que ha sido financiado por la Agencia Nacional de Investigación y Desarrollo / Programa Formación de Capital Humano Avanzado / Beca Doctorado en el Extranjero 72190314., Este artículo ha sido posible gracias al apoyo de la Agencia Nacional de Investigación y Desarrollo (ANID) (ANID – MILENIO – NCS2021_014, Basal FB0003)., Esta investigación se ha financiado por el Ministerio de Ciencia e Innovación (PID2022-138166NB-C22b) y se ha realizado dentro del grupo de investigación SGR ACELEC, ref.2021 SGR 00647”.

How to Cite

Vergara Sandoval, C., López-Simó, V., & Couso Lagarón, D. (2025). The modelling cycle through oral interaction in experimental workshops on force and motion . Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 22(2), 2301. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i2.2301

References

Baek, H., Schwarz, C., Chen, J., Hokayem, H., y Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. Models and modeling: Cognitive tools for scientific enquiry (pp. 195-218) Springer.

Bayraktar, S. (2009). Misconceptions of Turkish Pre-Service Teachers about Force and Motion. International Journal of Science and Mathematics Education, 7(2), 273-291. https://doi.org/10.1007/s10763-007-9120-9

Berland, L. K., y Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420

Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., y Zuwallack, R. (2015). A Review of Modeling Pedagogies: Pedagogical Functions, Discursive Acts, and Technology in Modeling Instruction. EURASIA Journal of Mathematics, Science and Technology Education, 11(1). https://doi.org/10.12973/eurasia.2015.1314a

Chiu, M.H., y Lin, J.W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 12. https://doi.org/10.1186/s43031-019-0012-y

Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. In Handbook of creativity (pp. 341-381). Springer.

Clement, J. (1993). Model construction and criticism cycles in expert reasoning. In the Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum.

Clement, J. J., y Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. Model based learning and instruction in science (pp. 1-9). Springer.

Colley, C., y Windschitl, M. (2021). A Tool for Visualizing and Inquiring into Whole-Class Sensemaking Discussions. Research in Science Education, 51(1), 51-70. https://doi.org/10.1007/s11165-020-09962-6

DBR Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005

Demirci, N. (2005). A Study about Students’ Misconceptions in Force and Motion Concepts by Incorporating a Web-Assisted Physics Program. Turkish Online Journal of Educational Technology-TOJET, 4(3), 40-48.

Dimitriadi, K., y Halkia, K. (2012). Secondary Students’ Understanding of Basic Ideas of Special Relativity. International Journal of Science Education, 34(16), 2565-2582. https://doi.org/10.1080/09500693.2012.705048

Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490. https://doi.org/10.1080/0950069890110501

Duschl, R., y Grandy, R. (2013). Two Views About Explicitly Teaching Nature of Science. Science y Education, 22(9), 2109-2139. https://doi.org/10.1007/s11191-012-9539-4

Duschl, R., Maeng, S., y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476

Eriksson, M., Linder, C., y Eriksson, U. (2019). Towards understanding learning challenges involving sign convention in introductory level kinematics. Physics Education Research Conference (PERC), Washington DC, 1-2 August 2018.

Eshach, H. (2014). The use of intuitive rules in interpreting students’ difficulties in reading and creating kinematic graphs. Canadian Journal of Physics, 92(1), 1-8. https://doi.org/10.1139/cjp-2013-0369

Garrido-Espeja, A. (2016). Modelització i models en la formació inicial de mestres de primària des de la perspectiva de la pràctica científica [Tesis doctoral, Universitat Autònoma de Barcelona]. Tesis doctorals en xarxa. http://hdl.handle.net/10803/399837

Garrido-Espeja, A., y Couso, D. (2024). The IPM cycle: An instructional tool for promoting students' engagement in modeling practices and construction of models. Journal of Research in Science Teaching 62(2), 391-425. https://doi.org/10.1002/tea.21979

Giere, R. (1988). Explaining science: A cognitive approach. University of Chicago Press.

Gilbert, J., y Justi, R. (2016). Learning Progression During Modelling-Based Teaching. Modelling-based Teaching in Science Education (pp. 193-222). Springer.

Gilbert, J. (2004). Models and Modelling: Routes to More Authentic Science Education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4

Göhner, M., y Krell, M. (2022). Preservice Science Teachers’ Strategies in Scientific Reasoning: The Case of Modeling. Research in Science Education, 52(2), 395-414. https://doi.org/10.1007/s11165-020-09945-7

Harlen, W., y Bell, D. (2010). Principles and big ideas of science education. Association for Science Education.

Hennessy, S., Rojas-Drummond, S., Higham, R., Márquez, A. M., Maine, F., Ríos, R. M., ... y Barrera, M. J. (2016). Developing a coding scheme for analysing classroom dialogue across educational contexts. Learning, culture and social interaction, 9, 16-44. https://doi.org/10.1016/j.lcsi.2015.12.001

Hennessy, S., Howe, C., Mercer, N., y Vrikki, M. (2020). Coding classroom dialogue: Methodological considerations for researchers. Learning, Culture and Social Interaction, 25, 100404. https://doi.org/10.1016/j.lcsi.2020.100404

Hernández, M. I., Couso, D., y Pintó, R. (2015). Analyzing Students’ Learning Progressions Throughout a Teaching Sequence on Acoustic Properties of Materials with a Model-Based Inquiry Approach. Journal of Science Education and Technology, 24(2-3), 356-377. https://doi.org/10.1007/s10956-014-9503-y

Herrera, Ll., Garrido-Espeja, A. y López-Simó, V. (2016). Moviment, forces i energia en un salt de puenting, seqüència didàctica per a l’estudi del moviment. Publicacions CRECIM

Izquierdo-Aymerich, M., Espinet, M., García, P., Pujol, R. M., y Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, no extra, 79-91.

Izquierdo-Aymerich, M., Sanmartí, N., y Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimentales. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 17(1), 45-59. https://doi.org/10.5565/rev/ensciencias.4104

Kawalkar, A., y Vijapurkar, J. (2013). Scaffolding Science Talk: The role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004-2027. https://doi.org/10.1080/09500693.2011.604684

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/SCE.20226

Krell, M., Walzer, C., Hergert, S., y Krüger, D. (2019). Development and Application of a Category System to Describe Pre-Service Science Teachers’ Activities in the Process of Scientific Modelling. Research in Science Education, 49(5), 1319-1345. https://doi.org/10.1007/s11165-017-9657-8

Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex Publishing Corporation.

Liu, G., y Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19-29.

López, V., Grimalt-Álvaro, C., y Couso, D. (2018). ¿Cómo ayuda la Pizarra Digital Interactiva (PDI) a la hora de promover prácticas de indagación y modelización en el aula de ciencias? Revista Eureka sobre enseñanza y divulgación de las ciencias, 15(3), 1-15. https://doi.org/10.25267/RevEurekaensendivulgcienc.2018.v15.i3.3302

Louca, L. T., y Zacharia, Z. C. (2015). Examining Learning Through Modeling in K-6 Science Education. Journal of Science Education and Technology, 24(2-3), 192-215. https://doi.org/10.1007/s10956-014-9533-5

Louca, L. T., Zacharia, Z. C., y Constantinou, C. P. (2011). In Quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919-951. https://doi.org/10.1002/tea.20435

Marzàbal, A., Merino, C., Soto, M., Cortés, A. (2024). Modeling-Based Science Education. En Marzabal, A., Merino, C. (eds) Rethinking Science Education in Latin-America. Contemporary Trends and Issues in Science Education, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-52830-9_13

Minner, G., Levy, A. J., y Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. https://doi.org/10.1002/tea.20347

Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. En P. Carruthers, S. Stich, y M. Siegal (Eds.), The Cognitive Basis of Science (1.a ed., pp. 133-153). Cambridge University Press. https://doi.org/10.1017/CBO9780511613517.008

NRC. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academy of Sciences. https://doi.org/10.17226/13165

Núñez-Oveido, M. C., Clement, J., y Rea-Ramirez, M. A. (2008). Developing Complex Mental Models in Biology Through Model Evolution. Model Based Learning and Instruction in Science, 173-193. https://doi.org/10.1007/978-1-4020-6494-4_10

OECD. (2019). PISA 2018: Assessment and Analytical Framework. OECD publishing. https://doi.org/10.1787/b25efab8-en

Oh, P. S., y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191

Oliva, J. M., Aragón, M. D. M., Jiménez-Tenorio, N., y Aragón, L. (2018). La modelización como enfoque didáctico y de investigación en torno a la educación científica. International Journal for 21st Century Education, 5(1), 3-18. https://doi.org/10.21071/ij21ce.v5i1.4156

Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648

Osborne, J. (2014). Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 25(2), 177-196. https://doi.org/10.1007/s10972-014-9384-1

Pintó, R., Couso, D. i Hernández, M. (2016). Moviment de frenada i distància de seguretat a la carretera. Seqüència didàctica per l’estudi del moviment. Publicacions CRECIM.

Rea-Ramirez, M. A., Clement, J., y Núñez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. En Model based learning and instruction in science (pp. 23–43). Springer. https://doi.org/10.1007/978-1-4020-6494-4_2

Rebmann, G., y Viennot, L. (1994). Teaching algebraic coding: Stakes, difficulties, and suggestions. American Journal of Physics, 62(8), 723-727. https://doi.org/10.1119/1.17504

Ruiz-Primo, M. A., y Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57-84. https://doi.org/10.1002/tea.20163

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., y Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311

Solé, C., Tena, E., Couso, D. y Hernández, M. (2019). Investigar sobre la contaminació a l’aula de Secundària. Material de l’alumnat. Versió 2. Publicacions CRECIM.

Soto, M., Couso, D., López-Simó, V., y Hernández, M. I. (2017). Promoviendo la apropiación del modelo de energía en estudiantes de 4o de ESO a través del diseño didáctico. Ápice. Revista de Educación Científica, 1(1), 90-106. https://doi.org/10.17979/arec.2017.1.1.2003

Tena, È., y Couso, D. (2023). ¿Cómo sé que mi secuencia didáctica es de calidad? Propuesta de un marco de evaluación desde la perspectiva de Investigación Basada en Diseño. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 20(2). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2801

Tena, È., Solé, C., y Couso, D. (2020). ¿Cómo podemos investigar la contaminación atmosférica en las aulas de primaria y secundaria? Una propuesta de indagación basada en la modelización. En VII Seminario Iberoamericano CTS (VII SIACTS).

Trowbridge, D. E., y McDermott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American Journal of Physics, 48(12), 1020-1028. https://doi.org/10.1119/1.12298

Upmeier zu Belzen, A., van Driel, J., y Krüger, D. (2019). Introducing a framework for modeling competence. Towards a competence-based view on models and modeling in science education, 3-19. https://doi.org/10.1007/978-3-030-30255-9_1

Vergara, C., López-Simó, V., y Couso, D. (2022). Revisiting the landscape roaming metaphor to understand students’ ideas on mammals’ and birds’ thermal regulation. Journal of Biological Education, 56(1), 47-60. https://doi.org/10.1080/00219266.2020.1748894

Viennot, L. (1979). Spontaneous Reasoning in Elementary Dynamics. European Journal of Science Education, 1(2), 205-221. https://doi.org/10.1080/0140528790010209

Williams, G., y Clement, J. (2015). Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models. International Journal of Science Education, 37(1), 82-107. https://doi.org/10.1080/09500693.2014.966257

Windschitl, M., Thompson, J., y Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259