The modelling cycle through oral interaction in experimental workshops on force and motion
Downloads
- PDF (Español (España)) 221
- EPUB (Español (España)) 51
- VISOR (Español (España))
- MÓVIL (Español (España))
- XML (Español (España)) 50
DOI
https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2025.v22.i2.2301Info
Abstract
The modeling cycle is an instrument that allows both structuring the design of teaching and learning sequences and the guidance of the dialogic interaction in the classroom focused on the progression of students' scientific ideas. This cycle proposes 6 instructional phases associated with 6 expected students’ performance, the main ones being the use and expression of the student's initial model, the evaluation of these models and their revision based on the emergence of new points of view. However, the order of the modelling practices in real contexts often differs from the canonical ideal. This research analysed modelling practices associated with high school student-teacher interactions in 4 experimental Newtonian physics workshops. For this purpose, 9.5 hours of dialogue were recorded and transcribed, and more than 1,600 utterances grouped into 229 discursive sequences were analysed. By analysing the modelling practices associated with each sequence, we identified four main patterns of chaining of such practices that allow us to understand how modelling practices are discursively promoted in science classrooms, and the progress of students' scientific ideas through their participation in these practices.
Keywords
Downloads
Supporting Agencies
How to Cite
License
Copyright (c) 2025 Camilo Vergara Sandoval, Víctor López-Simó, Digna Couso Lagarón

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Require authors to agree to Copyright Notice as part of the submission process. This allow the / o authors / is non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons is available on flexible copyright licenses (Creative Commons).

Reconocimiento-NoComercial
CC BY-NC
References
Baek, H., Schwarz, C., Chen, J., Hokayem, H., y Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. Models and modeling: Cognitive tools for scientific enquiry (pp. 195-218) Springer.
Bayraktar, S. (2009). Misconceptions of Turkish Pre-Service Teachers about Force and Motion. International Journal of Science and Mathematics Education, 7(2), 273-291. https://doi.org/10.1007/s10763-007-9120-9
Berland, L. K., y Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. https://doi.org/10.1002/sce.20420
Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., y Zuwallack, R. (2015). A Review of Modeling Pedagogies: Pedagogical Functions, Discursive Acts, and Technology in Modeling Instruction. EURASIA Journal of Mathematics, Science and Technology Education, 11(1). https://doi.org/10.12973/eurasia.2015.1314a
Chiu, M.H., y Lin, J.W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(1), 12. https://doi.org/10.1186/s43031-019-0012-y
Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. In Handbook of creativity (pp. 341-381). Springer.
Clement, J. (1993). Model construction and criticism cycles in expert reasoning. In the Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum.
Clement, J. J., y Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. Model based learning and instruction in science (pp. 1-9). Springer.
Colley, C., y Windschitl, M. (2021). A Tool for Visualizing and Inquiring into Whole-Class Sensemaking Discussions. Research in Science Education, 51(1), 51-70. https://doi.org/10.1007/s11165-020-09962-6
DBR Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005
Demirci, N. (2005). A Study about Students’ Misconceptions in Force and Motion Concepts by Incorporating a Web-Assisted Physics Program. Turkish Online Journal of Educational Technology-TOJET, 4(3), 40-48.
Dimitriadi, K., y Halkia, K. (2012). Secondary Students’ Understanding of Basic Ideas of Special Relativity. International Journal of Science Education, 34(16), 2565-2582. https://doi.org/10.1080/09500693.2012.705048
Driver, R. (1989). Students’ conceptions and the learning of science. International Journal of Science Education, 11(5), 481-490. https://doi.org/10.1080/0950069890110501
Duschl, R., y Grandy, R. (2013). Two Views About Explicitly Teaching Nature of Science. Science y Education, 22(9), 2109-2139. https://doi.org/10.1007/s11191-012-9539-4
Duschl, R., Maeng, S., y Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
Eriksson, M., Linder, C., y Eriksson, U. (2019). Towards understanding learning challenges involving sign convention in introductory level kinematics. Physics Education Research Conference (PERC), Washington DC, 1-2 August 2018.
Eshach, H. (2014). The use of intuitive rules in interpreting students’ difficulties in reading and creating kinematic graphs. Canadian Journal of Physics, 92(1), 1-8. https://doi.org/10.1139/cjp-2013-0369
Garrido-Espeja, A. (2016). Modelització i models en la formació inicial de mestres de primària des de la perspectiva de la pràctica científica [Tesis doctoral, Universitat Autònoma de Barcelona]. Tesis doctorals en xarxa. http://hdl.handle.net/10803/399837
Garrido-Espeja, A., y Couso, D. (2024). The IPM cycle: An instructional tool for promoting students' engagement in modeling practices and construction of models. Journal of Research in Science Teaching 62(2), 391-425. https://doi.org/10.1002/tea.21979
Giere, R. (1988). Explaining science: A cognitive approach. University of Chicago Press.
Gilbert, J., y Justi, R. (2016). Learning Progression During Modelling-Based Teaching. Modelling-based Teaching in Science Education (pp. 193-222). Springer.
Gilbert, J. (2004). Models and Modelling: Routes to More Authentic Science Education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
Göhner, M., y Krell, M. (2022). Preservice Science Teachers’ Strategies in Scientific Reasoning: The Case of Modeling. Research in Science Education, 52(2), 395-414. https://doi.org/10.1007/s11165-020-09945-7
Harlen, W., y Bell, D. (2010). Principles and big ideas of science education. Association for Science Education.
Hennessy, S., Rojas-Drummond, S., Higham, R., Márquez, A. M., Maine, F., Ríos, R. M., ... y Barrera, M. J. (2016). Developing a coding scheme for analysing classroom dialogue across educational contexts. Learning, culture and social interaction, 9, 16-44. https://doi.org/10.1016/j.lcsi.2015.12.001
Hennessy, S., Howe, C., Mercer, N., y Vrikki, M. (2020). Coding classroom dialogue: Methodological considerations for researchers. Learning, Culture and Social Interaction, 25, 100404. https://doi.org/10.1016/j.lcsi.2020.100404
Hernández, M. I., Couso, D., y Pintó, R. (2015). Analyzing Students’ Learning Progressions Throughout a Teaching Sequence on Acoustic Properties of Materials with a Model-Based Inquiry Approach. Journal of Science Education and Technology, 24(2-3), 356-377. https://doi.org/10.1007/s10956-014-9503-y
Herrera, Ll., Garrido-Espeja, A. y López-Simó, V. (2016). Moviment, forces i energia en un salt de puenting, seqüència didàctica per a l’estudi del moviment. Publicacions CRECIM
Izquierdo-Aymerich, M., Espinet, M., García, P., Pujol, R. M., y Sanmartí, N. (1999). Caracterización y fundamentación de la ciencia escolar. Enseñanza de las Ciencias, no extra, 79-91.
Izquierdo-Aymerich, M., Sanmartí, N., y Espinet, M. (1999). Fundamentación y diseño de las prácticas escolares de ciencias experimentales. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 17(1), 45-59. https://doi.org/10.5565/rev/ensciencias.4104
Kawalkar, A., y Vijapurkar, J. (2013). Scaffolding Science Talk: The role of teachers’ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004-2027. https://doi.org/10.1080/09500693.2011.604684
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/SCE.20226
Krell, M., Walzer, C., Hergert, S., y Krüger, D. (2019). Development and Application of a Category System to Describe Pre-Service Science Teachers’ Activities in the Process of Scientific Modelling. Research in Science Education, 49(5), 1319-1345. https://doi.org/10.1007/s11165-017-9657-8
Lemke, J. L. (1990). Talking science: Language, learning, and values. Ablex Publishing Corporation.
Liu, G., y Fang, N. (2016). Student misconceptions about force and acceleration in physics and engineering mechanics education. International Journal of Engineering Education, 32(1), 19-29.
López, V., Grimalt-Álvaro, C., y Couso, D. (2018). ¿Cómo ayuda la Pizarra Digital Interactiva (PDI) a la hora de promover prácticas de indagación y modelización en el aula de ciencias? Revista Eureka sobre enseñanza y divulgación de las ciencias, 15(3), 1-15. https://doi.org/10.25267/RevEurekaensendivulgcienc.2018.v15.i3.3302
Louca, L. T., y Zacharia, Z. C. (2015). Examining Learning Through Modeling in K-6 Science Education. Journal of Science Education and Technology, 24(2-3), 192-215. https://doi.org/10.1007/s10956-014-9533-5
Louca, L. T., Zacharia, Z. C., y Constantinou, C. P. (2011). In Quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919-951. https://doi.org/10.1002/tea.20435
Marzàbal, A., Merino, C., Soto, M., Cortés, A. (2024). Modeling-Based Science Education. En Marzabal, A., Merino, C. (eds) Rethinking Science Education in Latin-America. Contemporary Trends and Issues in Science Education, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-031-52830-9_13
Minner, G., Levy, A. J., y Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. https://doi.org/10.1002/tea.20347
Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. En P. Carruthers, S. Stich, y M. Siegal (Eds.), The Cognitive Basis of Science (1.a ed., pp. 133-153). Cambridge University Press. https://doi.org/10.1017/CBO9780511613517.008
NRC. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academy of Sciences. https://doi.org/10.17226/13165
Núñez-Oveido, M. C., Clement, J., y Rea-Ramirez, M. A. (2008). Developing Complex Mental Models in Biology Through Model Evolution. Model Based Learning and Instruction in Science, 173-193. https://doi.org/10.1007/978-1-4020-6494-4_10
OECD. (2019). PISA 2018: Assessment and Analytical Framework. OECD publishing. https://doi.org/10.1787/b25efab8-en
Oh, P. S., y Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
Oliva, J. M., Aragón, M. D. M., Jiménez-Tenorio, N., y Aragón, L. (2018). La modelización como enfoque didáctico y de investigación en torno a la educación científica. International Journal for 21st Century Education, 5(1), 3-18. https://doi.org/10.21071/ij21ce.v5i1.4156
Oliva, J. M. (2019). Distintas acepciones para la idea de modelización en la enseñanza de las ciencias. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 37(2), 5-24. https://doi.org/10.5565/rev/ensciencias.2648
Osborne, J. (2014). Teaching Scientific Practices: Meeting the Challenge of Change. Journal of Science Teacher Education, 25(2), 177-196. https://doi.org/10.1007/s10972-014-9384-1
Pintó, R., Couso, D. i Hernández, M. (2016). Moviment de frenada i distància de seguretat a la carretera. Seqüència didàctica per l’estudi del moviment. Publicacions CRECIM.
Rea-Ramirez, M. A., Clement, J., y Núñez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. En Model based learning and instruction in science (pp. 23–43). Springer. https://doi.org/10.1007/978-1-4020-6494-4_2
Rebmann, G., y Viennot, L. (1994). Teaching algebraic coding: Stakes, difficulties, and suggestions. American Journal of Physics, 62(8), 723-727. https://doi.org/10.1119/1.17504
Ruiz-Primo, M. A., y Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57-84. https://doi.org/10.1002/tea.20163
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., y Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
Solé, C., Tena, E., Couso, D. y Hernández, M. (2019). Investigar sobre la contaminació a l’aula de Secundària. Material de l’alumnat. Versió 2. Publicacions CRECIM.
Soto, M., Couso, D., López-Simó, V., y Hernández, M. I. (2017). Promoviendo la apropiación del modelo de energía en estudiantes de 4o de ESO a través del diseño didáctico. Ápice. Revista de Educación Científica, 1(1), 90-106. https://doi.org/10.17979/arec.2017.1.1.2003
Tena, È., y Couso, D. (2023). ¿Cómo sé que mi secuencia didáctica es de calidad? Propuesta de un marco de evaluación desde la perspectiva de Investigación Basada en Diseño. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 20(2). https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2023.v20.i2.2801
Tena, È., Solé, C., y Couso, D. (2020). ¿Cómo podemos investigar la contaminación atmosférica en las aulas de primaria y secundaria? Una propuesta de indagación basada en la modelización. En VII Seminario Iberoamericano CTS (VII SIACTS).
Trowbridge, D. E., y McDermott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American Journal of Physics, 48(12), 1020-1028. https://doi.org/10.1119/1.12298
Upmeier zu Belzen, A., van Driel, J., y Krüger, D. (2019). Introducing a framework for modeling competence. Towards a competence-based view on models and modeling in science education, 3-19. https://doi.org/10.1007/978-3-030-30255-9_1
Vergara, C., López-Simó, V., y Couso, D. (2022). Revisiting the landscape roaming metaphor to understand students’ ideas on mammals’ and birds’ thermal regulation. Journal of Biological Education, 56(1), 47-60. https://doi.org/10.1080/00219266.2020.1748894
Viennot, L. (1979). Spontaneous Reasoning in Elementary Dynamics. European Journal of Science Education, 1(2), 205-221. https://doi.org/10.1080/0140528790010209
Williams, G., y Clement, J. (2015). Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models. International Journal of Science Education, 37(1), 82-107. https://doi.org/10.1080/09500693.2014.966257
Windschitl, M., Thompson, J., y Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259

